Service Guide

Agilent Technologies PNA Series Microwave Network Analyzers E8362B, E8363B, E8364B

Agilent Technologies

Part Number E8364-90026
Printed in USA
December 2002

Notice

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AGILENT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AGILENT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD AGILENT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Certification

Agilent Technologies, Inc. certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies, Inc. further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Safety and Regulatory Information

The safety and regulatory information pertaining to this product is located in Chapter 1, "Safety and Regulatory Information."

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies, Inc. products. For information about these agreements and for other assistance, contact Agilent. Refer to "Contacting Agilent" on page 2-10.

Safety Notes

The following safety notes are used throughout this manual. Familiarize yourself with each of the notes and its meaning before operating this instrument. All pertinent safety notes for using this product are located in Chapter 1, "Safety and Regulatory Information."

> WARNING Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

CAUTION Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

Documentation Map

Standard Documentation:

The online Help files are embedded in the analyzer, offering quick reference to programming and user documentation. From the Help drop-down menu, you can access the Help system in five different languages. Also, you can view the Analyzer Product Overview multimedia presentation and access the analyzer's Web page.

The Installation and Quick Start Guide helps to quickly familiarize yourself with the analyzer. Procedures are provided for installing, configuring, and verifying the operation of the analyzer.

The CD-ROM provides the following:
-Installation and Quick Start Guide

- Service Guide
- Help system
- Help system in pdf format (for printing)
- Network Analyzer Product Overview multimedia presentation

Optional Documentation:

The optional printed version of the Service Guide provides information on troubleshooting and servicing your analyzer.

The optional printed version of the online Network Analyzer Help provides the Help system and programming information in printed form.

Contents

1 Safety and Regulatory Information
Information in This Chapter 1-2
Chapter One at-a-Glance 1-2
Safety Symbols 1-3
General Safety Considerations 1-3
Safety Earth Ground 1-3
Before Applying Power 1-3
Servicing 1-4
Electrostatic Discharge Protection 1-5
Regulatory Information 1-6
Instrument Markings 1-6
Lithium Battery Disposal 1-6
Compliance with German FTZ Emissions Requirements 1-7
Compliance with German Noise Requirements 1-7
2 General Product Information
Information in This Chapter 2-2
Chapter Two at-a-Glance 2-2
Maintenance 2-3
Physical Maintenance 2-3
Electrical Maintenance 2-3
Analyzer Options, Upgrades, and Accessories 2-3
Option 010, Time Domain 2-3
Option 014, Configurable Test Set 2-3
Option 016, Receiver Attenuators 2-4
Option 022, Extended Memory 2-4
Option 040, Extended Frequency Range to 40 GHz 2-4
Option 050, Extended Frequency Range to 50 GHz 2-4
Option 067, Extended Frequency Range to 67 GHz 2-4
Option 080, Frequency Offset Mode 2-5
Option 081, External Reference Switch 2-5
Option 083, Frequency Converter Measurement Application 2-5
Option 099, Firmware Upgrade 2-5
Option UNL, Source Attenuators and Bias Tees. 2-6
CD-RW Drive. 2-6
USB Hub 2-6
Option 0BW, Printed Service Guide 2-6
Option 1CP, Rack Mount Flange Kit for Instruments with Handles 2-6
Option 1CM, Rack Mount Flange Kit for Instruments without Handles 2-6
Required Service Test Equipment 2-7
Agilent Support, Services, and Assistance 2-10
Contacting Agilent 2-10
Service and Support Options 2-11
Calibration Options 2-11
Shipping Your Analyzer to Agilent for Service or Repair 2-11
3 Tests and Adjustments
Information in This Chapter 3-2
Chapter Three at-a-Glance 3-2
Before You Begin 3-4
Verify the Operating Environment 3-4
Protect Against Electrostatic Discharge (ESD) 3-4
Allow the Analyzer to Warm Up 3-4
Review the Principles of Connector Care 3-5
About System Verification and Performance Tests 3-6
System Specifications 3-6
Instrument Specifications 3-6
System Verification Procedure 3-7
Performance Tests 3-7
Certificate of Calibration 3-7
ANSI/NCSL Z540-1-1994 Verification 3-8
Non-ANSI/NCSL Z540-1-1994 Verification 3-9
Preliminary Checks 3-10
The Operator's Check 3-10
The Test Port Cable Checks 3-13
System Verification 3-20
What the System Verification Verifies 3-20
Measurement Uncertainty 3-21
Measurement Traceability 3-22
Performing System Verification. 3-23
Performance Tests (Agilent N2721A Software Package) 3-30
Source Power Accuracy Test 3-30
Source Power Linearity Test 3-31
Frequency Accuracy Test 3-31
Trace Noise Test 3-32
Receiver Compression Test 3-32
Noise Floor Test 3-33
Calibration Coefficient Test 3-34
System Crosstalk Test 3-35
Dynamic Accuracy Test 3-35
Power Meter Accuracy Test 3-37
Adjustments 3-42
Source Calibration Adjustment 3-43
Receiver Calibration Adjustment 3-44
LO Power Adjustment 3-47
10 MHz Frequency Reference Adjustment 3-49
3.8 GHz PMYO Frequency Adjustment 3-50
4 Troubleshooting
Information in This Chapter 4-2
Chapter Four at-a-Glance 4-2
Protect Against Electrostatic Discharge (ESD) 4-3
Assembly Replacement Sequence 4-3
Getting Started with Troubleshooting 4-4
Check the Basics. 4-4

Contents

Troubleshooting Organization 4-5
Power Up Troubleshooting. 4-6
Power Supply Check 4-7
Troubleshooting LCD Display Problems 4-13
Front Panel Troubleshooting 4-17
A1 Front Panel Keypad and RPG Test. 4-17
A2 Display Test 4-19
A3 Front Panel Interface Board 4-20
Rear Panel Troubleshooting 4-21
Checking the USB Ports 4-21
Checking the SERIAL (RS-232), PARALLEL (1284-C), or VGA Port 4-22
Checking the GPIB Port 4-22
LAN Troubleshooting 4-24
Measurement System Troubleshooting. 4-28
Verifying the A, B, R1, and R2 Traces (Standard S-Parameter Mode) 4-29
Where to Begin Troubleshooting 4-30
Checking the Source Group 4-33
Checking the Signal Separation Group 4-45
Checking the Receiver Group 4-49
Checking the Frequency Offset Group (Option 080) 4-51
Block Diagram E8362B, Std/UNL 4-57
Block DiagramE8362B, 014/016. 4-59
Block Diagram E8362B, 080 4-61
Block Diagram E8363/E8364B, Std/UNL 4-63
Block Diagram E8363B/E8364B, 014/016 4-65
Block Diagram E8363B/E8364B, 080. 4-67
5 Theory of Operation
Information in This Chapter 5-2
Chapter Five at-a-Glance 5-2
Network Analyzer System Operation 5-3
Functional Groups of the Network Analyzer 5-3
Source Group Operation 5-6
Band Modes 5-6
A8 Fractional-N Synthesizer Board 5-8
A17 L.O. Multiplier/Amplifier 10 (LOMA 10) 5-9
A18 Multiplier/Amplifier 20 (MA 20) 5-9
A19 Splitter 5-9
A20 L.O. Distribution Assembly (LODA) 5-9
A10 Frequency Reference Board 5-9
A11 Phase Lock Board 5-10
A12 Source 20 5-10
A21 Source Multiplier/Amplifier 50 (SOMA 50) (E8363B and E8364B Only) 5-11
A16 Test Set Motherboard 5-12
Signal Separation Group Operation 5-16
A22 Switch Splitter 5-16
A25 and A26 Test Port Couplers 5-17
A23 and A24 Detectors (E8363B and E8364B Only) 5-17
30-dB Fixed Attenuators (E8362B Only) 5-17
A36 and A37 60-dB Source Step Attenuators (Option UNL) 5-18
A38 and A39 Bias Tees (Option UNL). 5-18
A43 and A44 35-dB Receiver Step Attenuators (Option 016) 5-18
Option 014 Configurable Test Set 5-18
Receiver Group Operation. 5-21
A27, A28, A29, and A30 Receiver First Converters (Mixers). 5-21
LO Reject/Filter Board 5-21
A31, A32, A33, and A34 Receiver Modules 5-21
A6 SPAM Board (Analog Description). 5-23
A35 Receiver Motherboard 5-23
Frequency Offset Group Operation (Option 080) 5-24
A9 Fractional-N Synthesizer Board 5-24
A13 Frequency Offset Receiver Assembly 5-24
A45 and A46 Reference Transfer Switches (Option 081) 5-24
Digital Processing and Digital Control Group Operation 5-26
Front Panel Subgroup 5-28
Data Acquisition and Processing Subgroup 5-29
Power Supply Group Operation 5-31
6 Replaceable Parts
Information in This Chapter 6-2
Chapter Six at-a-Glance 6-2
Ordering Information 6-3
Assembly Replacement Sequence 6-4
Rebuilt-Exchange Assemblies 6-5
Replaceable Parts Listings 6-6
Front Panel Assembly, All Options 6-10
Top Assemblies and Hardware, All Options Except 080 6-12
Top Cables, All Options Except 080 6-14
Top Assemblies and Hardware, All Options Including 080 6-16
Top Cables, All Options Including 080 6-18
Bottom Assemblies, No Options 6-20
Bottom RF Cables, No Options 6-22
Bottom Flexible Cables, All Options 6-24
Bottom Ribbon Cables and Wrapped-Wire, No Options 6-26
Bottom Hardware, No Options 6-28
Parts Included with Option UNL 6-30
Parts Included with Option 014 (with or w/o Option 080) 6-32
Parts Included with Option UNL, 016 6-34
Parts Included with Option UNL, 014 (with or w/o Option 080) 6-36
Parts Included with Option UNL, 014, 016 (with or w/o Option 080) 6-39
Parts Included with Option 014, 080, 081 6-42
Parts Included with Option UNL, 014, 080, 081 6-45
Parts Included with Option UNL, 014, 016, 080, 081 6-48
Rear Panel Assembly, All Options 6-51
Internal Hardware and Parts, All Options 6-52
External Hardware and Parts, All Options 6-54
Hard Disk Drive Assembly 6-56
Miscellaneous Part Numbers 6-57
Miscellaneous Part Numbers (Continued) 6-59

Contents

7 Repair and Replacement Procedures
Information in This Chapter 7-2
Chapter Seven at-a-Glance 7-2
Before Starting the Removal and Replacement Procedures 7-3
Personal Safety Warnings. 7-3
Electrostatic Discharge (ESD) Protection 7-3
Assembly Replacement Sequence 7-3
Removal and Replacement Procedures 7-4
Removing the Covers 7-6
Raising and Removing the Receiver Deck 7-8
Removing and Replacing the Front Panel Assembly 7-10
Removing and Replacing Front Panel Subassemblies 7-12
Removing and Replacing the Display Inverter Board and the Display Lamp 7-14
Removing and Replacing the A4 Power Supply Assembly 7-16
Removing and Replacing the A6, A8, A9, and A10 Boards 7-18
Removing and Replacing the A11 Phase Lock Board. 7-20
Removing and Replacing the A12 Source 20 7-22
Removing and Replacing the A13 Frequency Offset Receiver Assembly 7-24
Removing and Replacing the A14 System Motherboard 7-26
Removing and Replacing the A15 CPU Board 7-28
Removing and Replacing the A16 Test Set Motherboard 7-30
Removing and Replacing the A17 LOMA 10 7-32
Removing and Replacing the A18 MA 20 7-34
Removing and Replacing the A19 Splitter 7-36
Removing and Replacing the A20 LODA 7-38
Removing and Replacing the A21 SOMA 50 (E8363B and E8364B Only) 7-40
Removing and Replacing the A22 Switch Splitter 7-42
Removing and Replacing the $30-\mathrm{dB}$ Fixed Attenuators (E8362B only) 7-44
Removing and Replacing the A23 and A24 Detectors (E8363B and E8364B only) 7-46
Removing and Replacing the A25 and A26 Test Port Couplers 7-48
Removing and Replacing the A27, A28, A29, and A30 First Converters (Mixers) and Mixer Bias Board 7-50
Removing and Replacing the A31, A32, A33, and A34 Receiver Modules and LO Reject Filter Board 7-52
Removing and Replacing the A35 Receiver Motherboard 7-54
Removing and Replacing the A36 and A37 60-dB Source Step Attenuators (Option UNL) $7-5$ 7-56
Removing and Replacing the A38 and A39 Bias Tees (Option UNL) 7-58
Removing and Replacing the A40 Floppy Disk Drive 7-60
Removing and Replacing the A41 Hard Disk Drive 7-62
Removing and Replacing the A43 and A44 35-dB Receiver Step Attenuators (Option 016) 7-68
Removing and Replacing the A45 and A46 Reference Channel Transfer Switches (Option 081) 7-70
Removing and Replacing the Midweb and the B1 Fan 7-72
Post-Repair Procedures 7-75
A Error Terms
Information in This Appendix A-2
Appendix A at-a-Glance A-2
Using Error Terms as a Diagnostic Tool A-3
Preventive Maintenance A-3
Troubleshooting A-3
Performing Measurement Calibration A-4
Using Flowgraphs to Identify Error Terms A-4
Accessing Error Terms A-6
Manual Access to Error Terms A-6
Programmatic Access to Error Terms A-7
Error Term Data A-8
If Error Terms Seem Worse than Expected A-9
Directivity (EDF and EDR) A-10
Source Match (ESF and ESR) A-11
Load Match (ELF and ELR) A-12
Reflection Tracking (ERF and ERR) A-13
Transmission Tracking (ETF and ETR) A-14
Isolation (EXF and EXR) A-15
B Option Enable Utility
Information in This Appendix B-2
Appendix B at-a-Glance B-2
Accessing the Option Enable Utility B-3
Installing or Removing Options B-3
Repairing and Recovering Option Data B-4
Recovery of Data After Repair B-4
Recovery of Data if Option or Model Numbers are Incorrect. B-4
Installing or Changing a Serial Number B-5
C Firmware Upgrades
Information in This Appendix C-2
Appendix C at-a-Glance C-2
How to Check the Current Firmware Version C-2
Downloading from the Internet C-2
Downloading Using Option 099, Firmware Upgrade C-3
Installation Requirements C-3
Downloading from a USB CD Drive Connected to the Analyzer C-3
Downloading from a Shared CD Drive Over the LAN C-3
Downloading Over the LAN C-4
D Operating System Recovery
Information in This Appendix D-2
Appendix D at-a-Glance. D-2
Overview D-3
System Recovery Procedure D-4
If the Operating System Does Not Boot From the Hard Disk Drive D-5
If the Operating System Does Not Boot From the Floppy Disk Drive D-6

1 Safety and Regulatory Information

Information in This Chapter

This chapter provides safety information that will help protect you and your network analyzer. It also contains information that is required by various government regulatory agencies.

Chapter One at-a-Glance

Section Title	Summary of Content	Start Page
Safety Symbols	Descriptions of CAUTION and WARNING symbols used throughout this manual.	Page 1-3
General Safety Considerations	A list of safety points to consider when servicing your network analyzer.	Page 1-3
Electrostatic Discharge Protection	A discussion of electrostatic discharge (ESD) and related recommendations and requirements for ESD protection.	Page 1-5
Regulatory Information	Definitions of instrument markings. Instructions for disposing of the analyzer's lithium battery. Information on compliance with Canadian EMC requirements. Information on compliance with German FTZ emissions requirements. Information on compliance with German noise requirements.	Page 1-6

Safety Symbols

The following safety symbols are used throughout this manual. Familiarize yourself with each of the symbols and its meaning before operating this instrument.

CAUTION Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution note until the indicated conditions are fully understood and met.

WARNING Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

General Safety Considerations

Safety Earth Ground

WARNING This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside of the instrument, will make the instrument dangerous. Intentional interruption is prohibited.

Before Applying Power

CAUTION This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.

CAUTION Make sure that the analyzer line voltage selector switch is set to the voltage of the power supply and the correct fuse is installed.

CAUTION Always use the three-prong AC power cord supplied with this product. Failure to ensure adequate grounding by not using this cord may cause product damage.

CAUTION If this product is to be energized via an autotransformer make sure the common terminal is connected to the neutral (grounded side of the mains supply).

Servicing

WARNING These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

WARNING The opening of covers or removal of parts may expose dangerous voltages. Disconnect the instrument from all voltage sources while it is opened.

WARNING Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according to manufacturer's instructions.

WARNING Procedures described in this document may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

WARNING The power cord is connected to internal capacitors that may remain live for 10 seconds after disconnecting the plug from its power supply.

WARNING For continued protection against fire hazard, replace line fuse only with same type and rating. The use of other fuses or material is prohibited.

WARNING The detachable power cord is the instrument disconnecting device. It disconnects the mains circuits from the mains supply before other parts of the instrument. The front panel switch is only a standby switch and is not a LINE switch (disconnecting device).

Electrostatic Discharge Protection

Protection against electrostatic discharge (ESD) is essential while removing assemblies from or connecting cables to the network analyzer. Static electricity can build up on your body and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt can cause permanent damage. To prevent damage to the instrument:

- always have a grounded, conductive table mat in front of your test equipment.
- always wear a grounded wrist strap, connected to a grounded conductive table mat, having a $1 \mathrm{M} \Omega$ resistor in series with it, when handling components and assemblies or when making connections.
- always wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap.
- always ground yourself before you clean, inspect, or make a connection to a static-sensitive device or test port. You can, for example, grasp the grounded outer shell of the test port or cable connector briefly.
- always ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows:

1. Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor.
2. While wearing a grounded wrist strap, grasp the outer shell of the cable connector.
3. Connect the other end of the cable to the test port and remove the short from the cable.

Figure 1-1 shows a typical ESD protection setup using a grounded mat and wrist strap. Refer to "ESD Supplies" on page 6-58 for part numbers.

Figure 1-1 ESD Protection Setup

[^0]
Regulatory Information

This section contains information that is required by various government regulatory agencies.

Instrument Markings

C

ICES/NMB-001

ISM1-A

 N10149This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.

This is a required mark signifying compliance with an EMC
The instruction documentation symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the documentation.

The CE mark is a registered trademark of the European Community. (If accompanied by a year, it is when the design was proven.)

The CSA mark is a registered trademark of the Canadian Standards Association. requirement. The C-Tick mark is a registered trademark of the Australian Spectrum Management Agency.

Lithium Battery Disposal

If the battery on the A15 CPU board assembly needs to be disposed of, dispose of it in accordance with your country's requirements. If required, you may return the battery to Agilent Technologies for disposal. Refer to "Contacting Agilent" on page 2-10 for assistance.

DO NOT THROW BATTERIES AWAY BUT
COLLECT AS SMALL CHEMICAL WASTE.

Compliance with German FTZ Emissions Requirements

This network analyzer complies with German FTZ 526/527 Radiated Emissions and Conducted Emission requirements.

Compliance with German Noise Requirements

This is to declare that this instrument is in conformance with the German Regulation on Noise Declaration for Machines (Laermangabe nach der Maschinenlaermrerordung-3. GSGV Deutschland).

Acoustic Noise Emission/Geraeuschemission	
LpA $<70 \mathrm{~dB}$	Lpa $<70 \mathrm{~dB}$
Operator Position	am Arbeitsplatz
Normal Operation	normaler Betrieb
per ISO 7779	nach DIN 45635 t.19

2 General Product Information

Information in This Chapter

Chapter Two at-a-Glance

Section Title	Summary of Content	Start Page
Maintenance	Cleaning instructions for the external surfaces of your analyzer. Information about electrical maintenance of your analyzer.	Page 2-3
Analyzer Options, Upgrades, and Accessories	A list of the options and upgrades available for the microwave network analyzers.	Page 2-3
Required Service Test Equipment	A list of service equipment that is required to perform system verification, performance tests, adjustments, and troubleshooting.	Page 2-7
Agilent Support, Services, and	The Internet address (URL) for on-line assistance. Assistance	Telephone and fax numbers for contacting Agilent for assistance. Service and support options available. Calibration options available.
Page 2-10		
Important information about shipping your analyzer to Agilent for service or repair.		

Maintenance

>	WARNING $\quad \begin{array}{l}\text { To prevent electrical shock, disconnect the analyzer from the mains } \\ \text { source before cleaning. Use a dry cloth or one slightly dampened } \\ \text { with water to clean the external case parts. Do not attempt to clean } \\ \text { internally. }\end{array}$

Physical Maintenance

Clean the cabinet, including the front panel, using a dry or slightly damp cloth only.

Electrical Maintenance

Refer to "Contacting Agilent" on page 2-10 and to Chapter 3, "Tests and Adjustments."

Analyzer Options, Upgrades, and Accessories

Option 010, Time Domain

An Option 010 analyzer can display the time domain response of a network or test device by calculating the inverse Fourier transform of the frequency domain response. This calculation allows the Option 010 analyzer to show the response of a test device as a function of time or distance. In time domain, the magnitude and location of a discontinuity and the characteristics of individual transmission paths of a network or test device can be determined. Time domain operation retains all the accuracy of active error correction.

This option is also available as an upgrade kit, model number: E836xBU-010.

Option 014, Configurable Test Set

An Option 014 analyzer can be configured to measure high-power devices and devices for high dynamic range.

For a high-power measurement, external amplifiers and high power attenuators or isolators can be added to complete the test setup. Test port output power up to 1 Watt $(+30 \mathrm{dBm})$ can be applied to the device under test (DUT). Additionally, there is an external reference input that allows the external amplifier's frequency response and drift to be ratioed out. There are also internal step attenuators between the coupler and the receivers to prevent receiver overload.
For high dynamic range measurements, front panel jumpers are moved to reverse the signal path through one of the couplers, allowing for a 15 dB improvement in transmitted signal sensitivity in one direction only. Jumpers are installed on both ports allowing the user to choose a measurement in either the forward or reverse direction.

This option is also available as an upgrade kit, model number: E836xBU-014.

Option 016, Receiver Attenuators

This upgrade provides the a $35-\mathrm{dB}$ step attenuator, in $5-\mathrm{dB}$ steps, in the A and B channels. This option is also available as an upgrade kit, model number: E836xBU-016.

Option 022, Extended Memory

This upgrade provides additional RAM for a total of 512 MB .
This option is also available as an upgrade kit, model number: E836xBU-022.

Option 040, Extended Frequency Range to $40 \mathbf{G H z}$

This upgrade—E8362BU-040—provides the additional hardware and software necessary to make frequency measurements up to 40 GHz with your E8362B PNA.
If you have a standard E8362B PNA, then upgrade E8362BU-040 provides the additional hardware and software necessary to make frequency measurements up to 50 GHz .
If your E8362B PNA already has option 014, then option E8362BU-040-014 provides additional hardware and software necessary to make frequency measurements up to 40 GHz , and upgrades your 20 GHz PNA (3.5 mm connectors) to 40 GHz hardware (2.4 mm connectors).

The upgrade kit model numbers are: E8362BU-040 or E8362BU-040-014 as required.

Option 050, Extended Frequency Range to $50 \mathbf{~ G H z}$

This upgrade provides the additional hardware and software necessary to make frequency measurements up to 50 GHz with your E8362B/63B PNA.

If you have a standard E8362B PNA, then upgrade E8362BU-050 provides the additional hardware and software necessary to make frequency measurements up to 50 GHz .
If your E8362B PNA already has option 014, then option E8362BU-050-014 provides additional hardware and software necessary to make frequency measurements up to 50 GHz , and upgrades your 20 GHz PNA (3.5 mm connectors) to 40 GHz hardware (2.4 mm connectors).

If you have a E8363B PNA—with or without option 014-then upgrade E8363BU-050 provides the additional hardware and software necessary to make frequency measurements up to 50 GHz .

The upgrade kit, model numbers are: E8362BU-050, E8362BU-050-014, or E8363BU-050 as required.

Option 067^{1}, Extended Frequency Range to $\mathbf{6 7} \mathbf{~ G H z}$

This upgrade provides the additional hardware and software necessary to make frequency measurements up to 67 GHz with your E8363B/64B PNA.
The upgrade kit model number is: E8363BU-067 or E8364BU-067.

1. This upgrade is not available for the E8362B PNA.

Option 080, Frequency Offset Mode ${ }^{1}$

This upgrade provides the additional hardware and software necessary to make frequency offset measurements.

This option is available as an upgrade kit, model number: E836xBU-080.

Option 081, External Reference Switch

This upgrade adds a solid-state internal RF transfer switch in the R1 reference receiver path. The switch allows the instrument to easily switch between standard S-parameter (non-frequency offset) measurements and frequency offset measurements such as relative phase or absolute group delay that require an external reference mixer. The user can set the switch manually or remotely, but it is best used with the frequency-converter application (option 083), where it is controlled automatically during the vector-mixer calibration procedure.
This option is also available as an upgrade kit, model number: E836xBU-081.

Option 083, Frequency Converter Measurement Application

This option adds an intuitive and easy-to-use user interface, advanced calibration choices that provide exceptional amplitude and phase accuracy, and control of external signal sources for use as local oscillators (both fixed and swept-LO measurements are supported). A graphical set-up dialog box lets you quickly set up the instrument for single or dual conversion devices. This set-up screen also helps you calculate and choose where mixing and image products will fall.

This option is also available as an upgrade kit, model number: E836xBU-083.

Option 099, Firmware Upgrade

This upgrade provides the latest revision of firmware for the PNA series network analyzers on CD-ROM. This firmware is user installable. The installation requires a US B CD-ROM drive (see "CD-RW Drive" on page 2-6) or an external computer connected to a Local Area Network (LAN).

This firmware is also available on the Internet at the Agilent website:
http://www.agilent.com/find/pna. (Select your analyzer's model number in this website to view available upgrades.)
This option is available as an upgrade kit, model number: E836xBU-099.

[^1]
Option UNL, Source Attenuators and Bias Tees

This option adds a $60-\mathrm{dB}$ step attenuator and a bias tee between the switch splitter and each of the ports. The step attenuators are used to adjust the power level to the device under test (DUT) without changing the power in the reference path. The bias tees provide a means of biasing active devices under test. DC bias for the bias tees is provided through two rear-panel BNC connectors. These inputs are fused for protection.
This option is available as an upgrade kit, model number: E836xBU-UNL.

CD-RW Drive

This accessory is an external read/write CD drive with a USB cable.
This accessory can be ordered as model number N4688A.

USB Hub

This accessory is a 4-port USB hub for connecting additional USB peripheral devices.
This accessory can be ordered as model number N4689A.

Option 0BW, Printed Service Guide

This option adds a printed copy of the assembly-level service guide (this manual).
This option is not available as an upgrade. It can be ordered as part number E8364-90026.

Option 1CP, Rack Mount Flange Kit for Instruments with Handles

Option 1CP provides a rack mount kit that contains a pair of flanges (cut to adapt to handles), rack mount rails, and the necessary hardware to mount the analyzer in an equipment rack with 482.6 mm (19 inches) horizontal spacing.
Additional kits may be ordered from Agilent. Refer to "Rack Mount Kits and Handle Kits" on page 6-59 for the part numbers.

Option 1CM, Rack Mount Flange Kit for Instruments without Handles

Option 1CM provides a rack mount kit that contains a pair of flanges, rack mount rails, and the necessary hardware to mount the analyzer in an equipment rack with 482.6 mm (19 inches) horizontal spacing.

Additional kits may be ordered from Agilent. Refer to "Rack Mount Kits and Handle Kits" on page 6-59 for the part numbers.

Required Service Test Equipment

Equipment ${ }^{\text {a }}$	Critical Specifications	Recommended Model or Part Number	Alternate Model or Part Number	Use ${ }^{\text {b }}$
Test Instruments and Software				
Frequency counter	Freq: 10 MHz to 20 GHz Accuracy : $\pm 0.5 \mathrm{ppm}$	$\begin{aligned} & 53151 \mathrm{~A} \\ & \text { Opt } 001 \end{aligned}$	None	P, A,T
Spectrum analyzer	Min Freq: 1 MHz Max Freq: > 4 GHz Resolution BW: 300 Hz	8565E	856xE	A,T
Power meter	Accuracy: $\pm 0.0068 \mathrm{~dB}$	$\begin{aligned} & \hline \mathrm{E} 4418 \mathrm{~B} / 19 \mathrm{~B} \\ & \text { Opt G12 or H12 } \end{aligned}$	E4418A/19A ${ }^{\text {d }}$	P, A,T
Power sensor (All)	Freq: 10 MHz to 4.2 GHz Range: -30 to +20 dBm	8482A	None	$\mathrm{P}, \mathrm{A}, \mathrm{T}$
Power sensor (E8362B)	Freq: 50 MHz to 20 GHz Range: -30 to +20 dBm	E4413A	None	$\mathrm{P}, \mathrm{A}, \mathrm{T}$
Power sensor (E8363B, E8364B)	Freq: 50 MHz to 50 GHz Range: -30 to +20 dBm	8487A	None	$\mathrm{P}, \mathrm{A}, \mathrm{T}$
Dynamic accuracy test set	None specified	$\begin{array}{\|l\|} \hline \text { Z5623A } \\ \text { Opt H01 } \end{array}$	None	P
Compression test set	None specified	$\begin{aligned} & \text { Z5623A } \\ & \text { Opt K01 } \end{aligned}$	None	P
Digital voltmeter	Resolution: 10 mV	Any	Any	T
Printer	N/A	Any printer with Windows® 2000	Microsoft® iver	P
Test software ${ }^{\text {e }}$	N/A	N2721A	None	P

a. Unless specified otherwise, equipment listed is required for all analyzer models.
b. $\mathrm{P}=$ Performance tests, $\mathrm{A}=$ Adjustments, $\mathrm{T}=$ Troubleshooting, $\mathrm{V}=$ System verification
c. The accuracy of a standard E4418B or E4419B of $\pm 0.02 \mathrm{~dB}$ is adequate for all tests except "Dynamic Accuracy Test." This test requires a power meter with Option G12 or H12 that has been certified to a higher accuracy specification. If an Option G12 or H12 power meter is not available, a test is provided on page 3-43 to verify the accuracy of a standard power meter.
d. If an accurate measurement of the dynamic accuracy specification is not required, the E4418A or E4419A can be used.
e. The recommended model or part number for all equipment listed with a " P " in the Use column is required for proper operation of this test software.

[^2]| Equipment ${ }^{\text {a }}$ | Critical Specifications | Recommended Model or Part Number | Alternate
 Model or Part
 Number | Use ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Verification Kits | | | | |
| 3.5 mm calibration kit (E8362B) | Freq: 10 MHz to 20 GHz | 85052B | 85052D | P,T |
| 3.5 mm verification kit (E8362B) | Freq: 10 MHz to 20 GHz | 85053B | None | V |
| 2.4 mm calibration kit (E8363B, E8364B) | Freq: 10 MHz to 50 GHz | 85056A | 85056D | P,T |
| 2.4 mm verification kit (E8363B, E8364B) | Freq: 10 MHz to 50 GHz | 85057B | None | V |
| Cables | | | | |
| BNC cable (2 required) | 50Ω, length $\geq 60 \mathrm{~cm}$ | 8120-1839 | None | A |
| 3.5 mm RF cable (Qty 2) (E8362B) | 50Ω, length $\geq 60 \mathrm{~cm}$ | 85131C | 85131E | P,A,V |
| 2.4 mm RF cable (Qty 2) (E8363B, E8364B) | 50Ω, length $\geq 60 \mathrm{~cm}$ | 85133C | 85133 E | P,A,V |
| GPIB cable | N/A | 10833A/B/C/D | None | P,A |
| Adapters | | | | |
| $3.5 \mathrm{~mm}(\mathrm{f}) \text { to } 3.5 \mathrm{~mm}(\mathrm{f})$ (E8362B) | Return Loss: $\geq 32 \mathrm{~dB}$ | 83059B | 85052-60012 ${ }^{\text {c }}$ | P,A,T |
| 3.5 mm (f) to type-N (m) (E8362B) | Return Loss: $\geq 28 \mathrm{~dB}$ | 1250-1743 | None | P,A,T |
| $2.4 \mathrm{~mm}(\mathrm{f}) \text { to } 2.4 \mathrm{~mm}(\mathrm{f})$ (E8363B, E8364B) | Return Loss: $\geq 26 \mathrm{~dB}$ | 11900B | 85056-60007 ${ }^{\text {d }}$ | P,A,T |
| 2.4 mm (f) to type-N (m) (E8363B, E8364B) | Return Loss: $\geq 28 \mathrm{~dB}$ | 11903D | None | P,A,T |
| Attenuators | | | | |
| $3.5 \mathrm{~mm}(\mathrm{~m}, \mathrm{f}), 10-\mathrm{dB}$ fixed attenuator (E8362B) | Accuracy: $\pm 0.5 \mathrm{~dB}$
 Freq: 10 MHz to 20 GHz | $\begin{aligned} & \text { 8493C } \\ & \text { Option } 010 \end{aligned}$ | None | P |
| $3.5 \mathrm{~mm}(\mathrm{~m}, \mathrm{f}), 20-\mathrm{dB}$ fixed attenuator
 (E8362B) | Accuracy: $\pm 0.5 \mathrm{~dB}$
 Freq: 10 MHz to 20 GHz | $\begin{aligned} & 8493 \mathrm{C} \\ & \text { Option } 020 \end{aligned}$ | None | P |
| $2.4 \mathrm{~mm}(\mathrm{~m}, \mathrm{f}), 10-\mathrm{dB}$ fixed attenuator (E8363B, E8364B) | Accuracy: $\pm 0.5 \mathrm{~dB}$
 Freq: 10 MHz to 50 GHz | $\begin{aligned} & \text { 8490D } \\ & \text { Option } 010 \end{aligned}$ | None | P |
| 2.4 mm (m,f), 20-dB fixed attenuator (E8363B, E8364B) | Accuracy: $\pm 0.5 \mathrm{~dB}$
 Freq: 10 MHz to 50 GHz | $\begin{aligned} & \text { 8490D } \\ & \text { Option } 020 \end{aligned}$ | None | P |

a. Unless specified otherwise, equipment listed is required for all analyzer models.
b. $\mathrm{P}=$ Performance tests, $\mathrm{A}=$ Adjustments, $\mathrm{T}=$ Troubleshooting, $\mathrm{R}=$ Repair, $\mathrm{V}=$ System verification
c. Included in the $85052 \mathrm{~B} / \mathrm{D}$ calibration kits.
d. Included in the $85056 \mathrm{~A} / \mathrm{D}$ calibration kits.

Equipment ${ }^{\text {a }}$	Critical Specifications	Recommended Model or Part Number	Alternate Model Number	Use ${ }^{\text {b }}$
Tools				
Extender board	N/A	E8356-60021	None	T
T-10 TORX driver	4, 7, and 9 in-lb settings	N/A	N/A	T,R
T-20 TORX driver	21 in-lb setting	N/A	N/A	T,R
5/16-inch, open-end torque wrench	10 and 21 in-lb settings (for semi-rigid cables)	N/A	N/A	T,R
1-inch, open-end torque wrench	72 in-lb setting (for Port 1 and Port 2 connectors)	N/A	N/A	R
1/4-inch and 5/16-inch open-end wrench	Thin profile	8710-0510	N/A	A,R
Static Safety Parts				
Adjustable antistatic wrist strap	N/A	9300-1367	None	P,A,T
Antistatic wrist strap grounding cord (5 foot)	N/A	9300-0980	None	P,A,T
Static control table mat and earth ground wire	N/A	9300-0797	None	P,A,T
Floppy disks	3.5 inch	Any	None	A

a. Unless specified otherwise, equipment listed is required for all analyzer models.
b. $\mathrm{P}=$ Performance tests, $\mathrm{A}=$ Adjustments, $\mathrm{T}=$ Troubleshooting, $\mathrm{R}=$ Repair, $\mathrm{V}=$ System verification

Agilent Support, Services, and Assistance

Information on the following topics is included in this section.

- "Contacting Agilent"
- "Service and Support Options"
- "Shipping Your Analyzer to Agilent for Service or Repair"

Contacting Agilent

By internet, phone, or fax, get assistance with all your test and measurement needs.
Table 2-1 Contacting Agilent

Online assistance: www. agilent.com/find/assist		
United States (tel) 18004524844	Latin America (tel) (305) 2697500 (fax) (305) 2697599	Canada (tel) 18778944414 (fax) (905) 282-6495
Europe (tel) (+31) 205472323 (fax) (+31) 205472390	Australia (tel) 1800629485 (fax) (+61) 392105947	New Zealand (tel) 0800738378 (fax) (+64) 44958950
Japan (tel) (+81) 426567832 (fax) (+81) 426567840	Singapore (tel) 18003758100 (fax) (65) 8360252	Malaysia (tel) 1800828848 (fax) 1800801664
India (tel) 1600112929 (fax) 0008006501101	Hong Kong (tel) 800930871 (fax) (852) 25069233	Taiwan (tel) 0800047866 (fax) (886) 225456723
Philippines (tel) (632) 8426802 (tel) (PLDT subscriber only) 180016510170 (fax) (632) 8426809 (fax) (PLDT subscriber only) 180016510288	Thailand (tel) (outside Bangkok) (088) 226008 (tel) (within Bangkok) (662) 6613999 (fax) (66) 16613714	People's Republic of China (tel) (preferred) 8008100189 (tel) (alternate) 108006500021 (fax) 108006500121

Service and Support Options

The analyzer's standard warranty is a three-year return to Agilent Technologies service warranty.

NOTE There are many other repair and calibration options available from the Agilent Technologies support organization. These options cover a range of service agreements with varying response times. Contact Agilent for additional information on available service agreements for this product. Refer to "Contacting Agilent" on page 2-10.

Calibration Options

Option R-50C-001, Commercial Calibration with Data

This option adds a certificate of calibration and the corresponding calibration data on a 3.5 -in floppy disk.

This option is not available as an upgrade. This certificate and data can be obtained by sending your analyzer to Agilent for calibration. Refer to "Agilent Support, Services, and Assistance" on page 2-10.

Option R-50C-002, Standards Compliant Calibration

This option provides a complete set of measurements which tests unit to manufacturer's published specifications. Includes calibration label, calibration certificate, and data report, measurement uncertainties, and guardbands on all customer specifications.

This option is also available as an upgrade only, part number: R-50C-002

Shipping Your Analyzer to Agilent for Service or Repair

IMPORTANT Agilent Technologies reserves the right to reformat or replace the internal hard disk drive in your analyzer as part of its repair. This will erase all user information stored on the hard disk. It is imperative, therefore, that you make a backup copy of your critical test data located on the analyzer's hard disk before shipping it to Agilent for repair.

If you wish to send your network analyzer to Agilent Technologies for service or repair:

- Include a complete description of the service requested or of the failure and a description of any failed test and any error message.
- Ship the analyzer using the original or comparable antistatic packaging materials.
- Contact Agilent for instructions on where to ship your analyzer. Refer to "Contacting Agilent" on page 2-10.

3 Tests and Adjustments

Information in This Chapter

This chapter contains procedures to help you check, verify, and adjust your PNA series network analyzer.

- The checks verify the operation of the assemblies in your analyzer.
- The verification compares the operation of your analyzer to a gold standard.
- The adjustments allow you to tune your analyzer for maximum response.

NOTE A description of the performance tests in the Agilent N2721A software package is included in this chapter. The Agilent N2721A software package must be purchased separately.

Chapter Three at-a-Glance

Section Title	Summary of Content	Start Page
Before You Begin	Items to consider or procedures to perform before testing is begun: - Verify the Operating Environment - Protect Against Electrostatic Discharge (ESD) - Allow the Analyzer to Warm Up - Review the Principles of Connector Care	Page 3-4
About System Verification and Performance Tests	Descriptions of: - System Specifications - Instrument Specifications - System Verification Procedure	Performance Tests
- Certificate of Calibration		

Section Title	Summary of Content	Start Page
Preliminary Checks	Performing the operator's check. Checking your test cables. Perform these checks before performing system verification.	Page 3-10
System Verification	What the system verification does. How to perform the verification test. How to interpret the results.	Page 3-20
Performance Tests	A brief summary of each performance test in the Agilent N2721A software package: - Source Power Accuracy Test	
Software Package)		
	- Source Power Linearity Test - Frequency Accuracy Test - Trace Noise Test	Page 3-30
- Noise Floor Test		
- Calibration Coefficient Test		
- System Crosstalk Test		
- Dynamic Accuracy Test		

a. The Agilent N2721A software package must be purchased separately.

Before You Begin

Before checking, verifying, or adjusting the analyzer, refer to the following paragraphs to:

- make sure the operating environment is within its requirements
- make sure that proper electrostatic discharge (ESD) protection is provided
- make sure the analyzer has warmed up properly to achieve system stability
- review the principles of connector care

Verify the Operating Environment

Due to their operating specifications, the verification and calibration kit devices determine your operating environment conditions. Open the calibration and verification kits and place all the devices on top of the foam inserts so they will reach room temperature. As the device dimensions change with temperature, their electrical characteristics change as well. It is necessary to keep the environmental levels within the following limits:

- Temperature: $+23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ (Error-corrected temperature range)

Once the measurement calibration has been done, the ambient temperature must be maintained to within $\pm 1^{\circ} \mathrm{C}$ of the calibration temperature.

- Humidity: 5% to 95% at $40{ }^{\circ} \mathrm{C}$ maximum
- Altitude: 0 to 15,240 meters (50,000 feet.)

Protect Against Electrostatic Discharge (ESD)

This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.

CAUTION	To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page 1-5, for all of the procedures in this chapter.

Allow the Analyzer to Warm Up

NOTE To achieve the maximum system stability, allow the analyzer to warm up for at least 90 minutes.

Review the Principles of Connector Care

Proper connector care and connection techniques are critical for accurate and repeatable measurements. Refer to Table 3-1 for tips on connector care.

Prior to making connections to your analyzer, carefully review the information about inspecting, cleaning, and gaging connectors. Refer to the calibration kit documentation for detailed connector care information.

For course numbers about additional connector care instruction, contact Agilent Technologies. Refer to "Contacting Agilent" on page 2-10.

Table 3-1 Connector Care Quick Reference Guide

Handling and Storage			
Do	- Keep connectors clean - Extend sleeve or connector nut - Use plastic end-caps during storage	Do Not	- Touch mating-plane surfaces - Set connectors contact-end down - Store connectors or adapters loose
Visual Inspection			
Do	- Inspect all connectors carefully - Look for metal particles, scratches, and dents	Do Not	- Use a damaged connector - ever
Connector Cleaning			
Do	- Try compressed air first - Use isopropyl alcohol - Clean connector threads	Do Not	- Use any abrasives - Get liquid into plastic support beads
Gaging Connectors			
Do	- Clean and zero the gage before use - Use the correct gage type - Use correct end of calibration block - Gage all connectors before first use	Do Not	- Use an out-of-specification connector
Making Connections			
Do	- Align connectors carefully - Make preliminary connection contact lightly - Turn only the connector nut - Use a torque wrench for final connection	Do Not	- Apply bending force to connection - Over tighten preliminary connection - Twist or screw any connection - Tighten past torque wrench "break" point

About System Verification and Performance Tests

The performance of the network analyzer is specified in two ways: system specifications, and instrument specifications. Respectively, the analyzer's conformance to these specifications is verified in two ways: system verification and performance tests.

System Specifications

System specifications specify warranted performance of the measurement system when making error-corrected measurements. The measurement system includes the analyzer, test cables, and calibration kit.
The analyzer's system specifications are described in the Agilent PNA Series Network Analyzer Data Sheet and also in the analyzer's on-line help system.
System specifications are included in the section titled "Corrected System Performance."
System specifications are expressed in two ways:

- residual errors of the measurement system
- graphs of measurement uncertainty versus reflection and transmission coefficients

System specifications are applicable when the measurement system is used to make error-corrected measurements.

System specifications are verified in one of the following ways:

- Complete the system verification procedure using a certified verification kit, or
- Complete all of the performance tests and certify (or recertify) the calibration kit that will be used for future measurements. This alternative verifies both the system specifications and the instrument specifications for the analyzer.

Instrument Specifications

Instrument specifications specify the network analyzer's uncorrected measurement port characteristics and its output and input behavior.
The analyzer's instrument specifications are described in the Agilent PNA Series Network Analyzer Data Sheet and also in the analyzer's on-line help system. The sections that describe instrument specifications are titled:

- "Uncorrected System Performance"
- "Test Port Output"
- "Test Port Input"

These specifications apply when the analyzer is used to make measurements other than error-corrected measurements. An example would be the measurement of amplifier gain compression.

Performance tests are used to confirm that the analyzer meets the instrument specifications.

System Verification Procedure

The system verification procedure tests the network analyzer measurement system, as defined previously, against the system specifications. If confirmation is successful, the measurement system is capable of making measurements to the accuracy specified by the graphs of measurement uncertainty.
An illustrated outline of the system verification procedure:

- for ANSI/NCSL Z540-1-1994 verification, is shown in Figure 3-1 on page 3-8.
- for non-ANSI/NCSL Z540-1-1994 verification, is shown in Figure 3-2 on page 3-9.

NOTE \quad Calibration kits are different from verification kits. Calibration kits are used to determine the systematic errors of a network analyzer measurement system. Verification kits are used to confirm system specifications and are not used to generate error correction.

Performance Tests

Performance tests are used to confirm analyzer performance against the instrument specifications. If confirmation is successful, the analyzer meets the instrument specifications.

If the calibration kit to be used for measurements is also certified, successful completion of the performance tests also ensures that the network analyzer measurement system meets the system specifications.

Certificate of Calibration

Agilent Technologies will issue a certificate of calibration for the product upon successful completion of system verification or completion of the performance tests. The certificate of calibration will include a "System Attachment" if the system verification procedure is used to confirm the system specifications. If the performance tests are used to confirm instrument specifications, the certificate of calibration will not include a system attachment. The equipment and measurement standards used for the tests must be certified and must be traceable to recognized standards.

NOTE If you have a measurement application that does not use all of the measurement capabilities of the analyzer, you may ask your local Agilent Technologies service office to verify only a subset of the specifications. However, this creates the possibility of making inaccurate measurements if you then use the analyzer in an application requiring additional capabilities.

ANSI/NCSL Z540-1-1994 Verification

To meet the criteria for ANSI/NCSL Z540-1-1994, perform the preliminary checks and either system verification or performance tests without stopping to repair or adjust ${ }^{1}$. Refer to Figure 3-1 for test flow. Print data at the completion of all the tests, even if you are aware that the analyzer did not pass. If there is a failure, complete the verification before you troubleshoot, repair, and adjust. After the failure has been corrected, repeat the entire system verification or performance tests and generate a new set of data.

Figure 3-1 ANSI/NCSL Z540-1-1994 Test Path Verification Flowchart

1. Stop only in case of a catastrophic failure or cable connector damage.

Non-ANSI/NCSL Z540-1-1994 Verification

For non-ANSI/NCSL Z540-1-1994, perform the preliminary checks and either the system verification or performance tests while stopping to troubleshoot. Refer to Figure 3-2 for test flow. Troubleshoot and repair the first problem encountered without continuing to other tests. After you troubleshoot, repair, and adjust, repeat the last failed portion and generate a new set of data. Print out the system verification results or complete the performance test record as the analyzer passes each test.

Figure 3-2 Non-ANSI/NCSL Z540-1-1994 Test Path Verification Flowchart

Preliminary Checks

Preliminary checks include the following:

- "The Operator's Check" on page 3-10

The operator's check tests the network analyzer's basic functionality of the source, switch, step attenuators, and receivers.

- "The Test Port Cable Checks" on page 3-13

The test port cable checks are not required, but are recommended to verify the performance of the test port cables before performing the verification test.

The Operator's Check

> | NOTE | $\begin{array}{l}\text { To achieve the maximum system stability, allow the analyzer to warm up for } \\ \text { at least } 90 \text { minutes before performing the Operator's Check. }\end{array}$ |
| :--- | :--- |

The operator's check is a software driven test that checks the basic operation of the assemblies in the Port 1 and Port 2 paths. By performing the operator's check, the following is determined:

- operation of the transfer switch (switch repeatability check)
- phase-lock capability across the entire frequency band (switch repeatability check)
- function of the five receivers (switch repeatability check)
- operation of the step attenuators (attenuator range check-Option UNL only)
- receivers' linearity (attenuator range check-Option UNL only)

Switch Repeatability Check

The check performs a reflection measurement of a short and stores the resulting trace in memory. The transfer switch is toggled to the opposite port and back, and then another reflection measurement is made. The difference between the stored trace and the return trace is the switch repeatability. This test also checks the phase lock across the entire frequency band and operation of all four receivers.

Attenuator Range Check-Option UNL Only

This check performs a reflection measurement of a short and stores the resulting trace in memory. As the internal attenuator is switched in 10 dB steps over its 60 dB range, reflection measurements are made and compared with the stored trace. The resulting measurements must fall within a limit testing window to pass the test. The window size is based on source and receiver specifications. By performing the Port 1 and Port 2 tests, rough checks of the linearity for all four receivers (from 0 dB to 60 dB) are verified and operation of the attenuator is verified.

Accessories Used in the Operator's Check

Equipment Type	Models Used With	Part Number
Female short, 3.5 mm	E8362B	$85052-60007$ (from the 85052 calibration kit)
Female short, 2.4 mm	E8363B, E8364B	$85056-60021$ (from the 85056 calibration kit)

Performing the Operator's Check

1. From the System menu, point to Service, and then click Operator's Check.
2. In the Operator's Check dialog box (refer to Figure 3-3), click Configure, and then select either Automatic, to run through the test without stopping, or Prompted, to pause at each step in the process.
3. To check Port 1, click Start--Port 1 or to check Port 2, click Start--Port 2.
4. The test will prompt you to connect the short.
5. The result of the operator's check will be shown as a PASS or FAIL next to the test.

Figure 3-3 Operator's Check Dialog Box

- Operstor's Check		- 回
Conlgure Hep		
	Operator's Check	Agilent
Port 1 Results	Option UNL Installed: YES	Port 2 Results
Switch Repealabiliy . Not done		Switch Repealabily . Not done
Alterwator Rarge 1 - Not done		Altervator Riange 1 - Not done
Atherustor Ringe 2 - Not done		Alterustor Range 2-Not done
Alterustor Range 3 Not done		Alterusior Range 3 Not done
Alterustor Range 4-Not done		Altervustor Range 4. Not done
Alterustor Range 5 - Not done		Altervistor Range 5-Not done
Alterustor Riange 6 - Not done		Alterustor Range 6 - Not done
Atterustor Risnge 7 - Not done		Alterastor Range 7 - Not done
Stat .- Poat 1	Ent	Slat-Pot2

If the Operator's Check Fails

1. Clean the test ports, shorts, and adapters. Torque to specification. Repeat the check.
2. If the check still fails, suspect a faulty component:

- A repeated failure in the switch repeatability for both the Port 1 and Port 2 checks indicates a faulty A22 switch splitter. Refer to "Removing and Replacing the A22 Switch Splitter" on page 7-40.
- A repeated failure in any of the ranges of the attenuator check indicates a faulty step attenuator.
- If the Port 1 check fails, the A25 step attenuator may be faulty.
- If the Port 2 check fails, the A26 step attenuator may be faulty.

Refer to "Removing and Replacing the A36 and A37 60-dB Step Attenuators (Option UNL)" on page 7-54.

- If all ranges of the attenuator check fail, suspect a loose connection on the step attenuator control cable.
- If the Port 1 check fails, check the A25 step attenuator cable.
- If the Port 2 check fails, check the A26 step attenuator cable.

The Test Port Cable Checks

A faulty test port cable can cause a failure in the verification test. The following checks are not required, but are recommended to verify the performance of the test port cable.

- "Cable Return Loss Check" on page 3-14
- "Cable Insertion Loss Check" on page 3-15
- "Cable Magnitude and Phase Stability Check" on page 3-16
- "Cable Connector Repeatability Check" on page 3-18

Accessories Used in the Test Port Cable Checks

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Calibration kit, 3.5 mm	E8362B	85052 B	85052 D
RF cable, 3.5 mm (f) to 3.5 mm (f)	E8362B	85131 C	85131 E
Calibration kit, 2.4 mm	E8363B, E8364B	85056 A	85056 D
RF cable, 2.4 mm (f) to 2.4 mm (f)	E8363B, E8364B	85133 C	85133 E

Cable Return Loss Check

1. Press Preset.

2. Perform a one-port calibration on Port 1, 1-Port Reflection. Refer to the embedded help in the analyzer if necessary.
3. Connect the test port cable to Port 1. Connect a broadband load to the other end of the cable. Tighten to the specified torque for the connector type.

The analyzer now displays the return loss of the cable.
4. From the Marker menu, click Marker Search. In the Marker Search dialog box, in the Search Type box, make sure Maximum is selected. Click Execute, and then click OK.
5. The marker annotation on the screen indicates the worst case return loss. Refer to the cable manual to see if it meets the return loss specification. For an example of a typical return loss measurement, see Figure 3-4.

Figure 3-4 Typical Cable Return Loss Response

If the Cable Return Loss Check Fails

1. Clean the cable and devices and torque to specification. Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

Cable Insertion Loss Check

1. With the test port cable still connected to Port 1, connect a short to the other end of the cable.
2. From the Marker menu, click Marker Search. In the Marker Search dialog box, in the Search Type box, select Minimum. Click Execute, and then click OK.
3. The displayed response is twice the actual loss. To get the actual worst case insertion loss, divide the value at the marker annotation by two. Refer to the cable manual to see if it meets the insertion loss specification. For an example of a typical insertion loss measurement, see Figure 3-5.

Figure 3-5 Typical Cable Insertion Loss Response

If the Cable Insertion Loss Check Fails

1. Clean the cable and devices and torque to specification. Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

Cable Magnitude and Phase Stability Check

1. With the test port cable still connected to Port 1, connect a short to the other end of the cable.
2. Press Preset.
3. On the Trace menu, click New Trace. In the New Trace dialog box, click the S11 box, and then click OK.
4. On the Trace menu, click Format. In the Format dialog box, click Phase, and then click OK.
5. On the Channel menu, click Average. In the Average dialog box, click the Average ON check box. In the Average Factor box, type 50 or click the arrows to select 50, and then click OK.
6. To provide a good reference, hold the test cable in a straight line perpendicular to the front panel of the network analyzer.
7. On the Channel menu, click Restart Avg.
8. Wait for the analyzer to average the measurement 50 times (approximately two seconds).
9. To normalize the data trace:
a. On the Trace menu, click Math/Memory.
b. In the Math/Memory dialog box, click the Data->Memory button.
c. In the Data Math list, select Data/Memory.
d. Under Trace View Options, make sure Data Trace is selected.
e. Click OK.
10. Slowly make a 180 degree bend in the middle of the cable and hold it in that position.
11. For each trace: On the Scale menu, set the Scale Per Division for optimum viewing as shown in Figure 3-6.
12. Place a marker on the largest deflection that goes above the reference line and is within the cable's specified frequency range. For a typical response of cable magnitude and phase stability, see Figure 3-6.
13. Place a marker on the largest deflection that goes below the reference line and is within the cable's specified frequency range.

In this S_{11} measurement, the displayed trace results from energy being propagated down the cable and reflected back from the short. Therefore, the measured deflection value must be divided in half to reach the correct value.

Figure 3-6 Typical Cable Magnitude and Phase Stability Response

If the Cable Magnitude and Phase Stability Check Fails

1. Clean the cable and devices and torque connections to specifications (refer to "Review the Principles of Connector Care" on page 3-5). Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

Cable Connector Repeatability Check

NOTE The connector repeatability measurement should be done at the test port as well as at the end of the test port cable.

1. With the test port cable still connected to Port 1, connect a broadband load to the other end of the cable.
2. Press Preset.
3. On the Channel menu, click Average. In the Average dialog box, click the Average ON check box. In the Average Factor box, type 100 or click the arrows to select 100. Click OK.
4. Wait for the analyzer to average the measurement 100 times (approximately five seconds).
5. To normalize the data trace:
a. On the Trace menu, click Math/Memory.
b. In the Math/Memory dialog box, click the Data->Memory button.
c. In the Data Math list, select Data/Memory.
d. Under Trace View Options, make sure Data Trace is selected.
e. Click OK
6. To adjust the display scale:
a. On the Scale menu, click Scale.
b. In the Scale Per Division box, click the arrow to select $\mathbf{0 . 5} \mathbf{d B}$.
c. In the Level box under Reference click the arrow to select $\mathbf{0} \mathbf{d B}$.
d. Click OK.
7. Disconnect and then reconnect the cable to the test port. Tighten the connection to the specified torque for the connector type.
8. On the Channel menu, click Restart Avg.
9. Look at the trace for spikes or modes.
10. To re-normalize the data trace of the reconnected cable:
a. On the Trace menu, click Math/Memory.
b. In the Math/Memory dialog box, click the Data->Memory button.
c. Click OK.
11. Repeat steps 7 through 9 at least three times to look for modes. Modes appear when a harmonic of the source fundamental frequency is able to propagate through the cable or connector. It is helpful to print a plot of the trace each time to compare several connections. If any mode appears each time the cable is connected and reconnected, measurement integrity will be affected.

For a typical response of cable connector repeatability, see Figure 3-7.
12. For the Port 2 Check, connect the cable (with the load attached) to Port 2 and repeat steps 2 through 11.

Figure 3-7 Typical Cable Connector Repeatability Response

If the Cable Connector Repeatability Check Fails

1. Clean the cable and devices, and torque connections to specifications (refer to "Review the Principles of Connector Care" on page 3-5). Repeat the check.
2. If the check still fails, the cable should be repaired or replaced.

System Verification

System verification is used to verify system-level, error-corrected uncertainty limits for network analyzer measurements. The verification procedure is automated and is contained in the firmware of the analyzer.

The device data provided with the verification kit has a traceable path to a national standard. The difference between the supplied traceable data and the measured data must fall within the total uncertainty limits at all frequencies for the system verification to pass.
The total measurement uncertainty limits for the system verification are the sum of the factory measurement uncertainties for the verification devices and the uncertainties associated with the system being verified. You can determine your system measurement uncertainty limits by referring to the analyzer embedded on-line help.

IMPORTANT Passing this system verification does not guarantee that the analyzer meets all of its performance specifications. However, it does show that the network analyzer being verified measures the same devices with the same results as a factory system which has had all of its specifications verified and its total measurement uncertainty minimized.

What the System Verification Verifies

The system verification procedure verifies proper operation of the:

- network analyzer
- calibration kit
- test port cables

NOTE Additional equipment or accessories used with the above system are not verified by system verification.

Measurement Uncertainty

Measurement uncertainty is defined as the sum of:

- the residual systematic (repeatable) errors, and
- the random (non-repeatable) errors
in the measurement system after calibration.
The systematic errors are:
- directivity,
- source match,
- load match,
- reflection and transmission frequency tracking, and
- isolation (crosstalk).

The random errors include:

- noise,
- drift,
- connector repeatability, and
- test cable stability.

A complete description of system errors and how they affect measurements is provided in the analyzer's on-line embedded help.
Any measurement result is the vector sum of the actual test device response plus all error terms. The precise effect of each error term depends on its magnitude and phase relationship to the actual test device response. When the phase of an error response is not known, phase is assumed to be worst-case (-180° to $+180^{\circ}$). Random errors such as noise and connector repeatability are generally combined in a root-sum-of-the-squares (RSS) manner.

Measurement Traceability

To establish a measurement traceability path to a national standard for a network analyzer system, the overall system performance is verified through the measurement of devices that have a traceable path. This is accomplished by measuring the devices in an Agilent verification kit.

The measurement of the devices in the verification kit has a traceable path because the factory system that measured the devices is calibrated and verified by measuring standards that have a traceable path to the National Institute of Standards and Technology (NIST) (see Figure 3-8). This chain of measurements defines how the verification process brings traceability to the network analyzer system.

Figure 3-8 NIST Traceability Path for Calibration and Verification Standard

Performing System Verification

The following verification procedure is automated by the analyzer firmware. For each verification device, the analyzer reads a file from the verification disk and sequentially measures the magnitude and phase for all four S-parameters.

NOTE Although the performance for all four S-parameters are measured, the S_{11} and S_{22} phase uncertainties for the attenuators and airlines are less important for verifying system performance. Therefore, the limit lines will not appear on the printout.

Equipment Used in the System Verification Procedure

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Calibration kit, 3.5 mm	E8362B	85052 B	85052 D
Verification kit, 3.5 mm	E8362B	85053 B	None
RF cable, 3.5 mm (f) to 3.5 mm (f)	E8362B	85131 C	85131 E
Calibration kit, 2.4 mm	E8363B, E8364B	85056 A	85056 D
Verification kit, 2.4 mm	E8363B, E8364B	85057 B	None
RF cable, 2.4 mm (f) to 2.4 mm (f)	E8363B, E8364B	85133 C	85133 E

Cable Substitution

The test port cables specified for the network analyzer system have been characterized for connector repeatability, magnitude and phase stability with flexing, return loss, insertion loss, and aging rate. Since test port cable performance is a significant contributor to the system performance, cables of lower performance will increase the uncertainty of your measurement. Refer to the plots in the cable tests (earlier in this chapter) that show the performance of good cables. It is highly recommended that the test port cables to be regularly tested.
If the system verification is performed with a non-Agilent cable, ensure that the cable meets or exceeds the specifications for the RF cable specified in the above table, "Equipment Used in the System Verification Procedure." Refer to the cable's user's guide for specifications.

Kit Substitution

Non-Agilent calibration kits and verification kits are not recommended nor supported.

Precautions for Handling Airlines

The verification kit includes airlines. Follow the steps below to ensure good measurement techniques.

- Be very careful not to drop the airline's center or outer conductor. Irreparable damage will result if these devices are dropped.
- During this procedure, you will be touching the exposed center conductor of the test port and the center conductor of the airline.
- Observe proper ESD procedures.
- Clean your hands or wear gloves; skin oils will cause a change in electrical performance.
- Refer to Figure 3-9, Figure 3-10, and to your calibration kit manual for connection procedures.

Figure 3-9 Aligning the Center Conductor

ph58b

Figure 3-10 Torquing the Connection

ph59b

System Verification Procedure

1. Connect a cable to Port 1 on the analyzer as shown in Figure 3-11. If you desire printed test outputs, connect a printer to the analyzer. For the printer, ensure that the correct driver is loaded and the printer is defined as the default printer. Refer to the embedded help in the analyzer for printer setup. Let the analyzer warm up for at least 90 minutes.

Figure 3-11 System Verification Test Setup

2. Insert the verification kit disk into the analyzer disk drive.
3. On the System menu, point to Service, and then click System Verification. The System Verification dialog box is displayed; refer to Figure 3-12.

Figure 3-12 System Verification Dialog Box

4. In the Calibration Kit box, select the calibration kit that is being used by clicking on it. The corresponding verification kit to use is selected for you and displayed in the Verification Kit box. Refer to Figure 3-12.
5. Under Printer Output, click one of the following options. Refer to Figure 3-12.

- None: No printout of results.
- Tabular Data: Prints the verification data in tabular form which includes measured data and uncertainty limits. For an example, refer to Figure 3-15 on page 3-28.
- Measurement Plots: Prints the verification data in graphical form. The graphical form includes the measured data trace, factory supplied data trace, and uncertainty limits. For an example, refer to Figure 3-16 on page 3-29.
- Both: Prints the verification data in both formats.

NOTE For printed output, it is assumed that the printer has been tested and the Windows 2000 driver is installed for the printer that is being used. The system verification test prints to the printer that has been designated as the default printer. (On the Windows Desktop display, click on My Computer, Control Panel, and then Printers to verify the printer setup.)

6. Click Run.

7. Follow the instructions on the analyzer for performing a full 2-port calibration.
8. After completion of the full 2-port calibration, follow the instructions on the analyzer for performing the system verification.

For the system verification, insert the devices as shown in Figure 3-13.
Figure 3-13 System Verification Device Connections

st506a

If the System Fails the Verification Test

IMPORTANT Inspect all connections. Do not remove the cable from the analyzer test port. This will invalidate the calibration that you performed earlier.

1. Disconnect and clean the device that failed the verification test.
2. Reconnect the device making sure that all connections are torqued to the proper specifications.
3. Measure the device again.
4. If the analyzer still fails the test, check the measurement calibration by viewing the error terms as described in "Accessing Error Terms" on page A-6.
5. Refer to Figure 3-14 for additional troubleshooting steps.

Figure 3-14 System Verification Failure Flowchart

Interpreting the Verification Results

Figure 3-15 shows an example of typical verification results with Tabular Data selected in the Printer Output area of the System Verification dialog box.

At the top of the printed output is the name of the device, the serial number of the device, and the date tested.

Each S-parameter measurement result is printed with frequency tested, lower and upper limit lines, the measured data, and the result of the test.

Figure 3-15 Example of Printed Tabular Verification Results

S11 Results				
Frequency	Lower Limit	Measured Data	Upper Limit	Result
0.3 MHz	0.0048 Units	0.0090 Units	0.0139 Units	PASS
100	0.0046	0.0091	0.0137	PASS
200	0.0042	0.0092	0.0134	PASS
300	0.0040	0.0091	0.0133	PASS
400	0.0038	0.0089	0.0131	PASS
500	0.0036	0.0087	0.0129	PASS
600	0.0034	0.0085	0.0127	PASS
700	0.0031	0.0082	0.0125	PASS
800	0.0029	0.0080	0.0122	PASS
900	0.0026	0.0079	0.0119	PASS
1000	0.0023	0.0075	0.0117	PASS
1100	0.0020	0.0072	0.0114	PASS
1200	0.0017	0.0068	0.0111	PASS
1300	0.0013	0.0064	0.0107	PASS
1400	-0.0006	0.0059	0.0118	PASS
1500	-0.0011	0.0052	0.0113	PASS
1600	-0.0015	0.0044	0.0108	PASS
1700	-0.0020	0.0038	0.0103	PASS
1800	-0.0026	0.0032	0.0097	PASS
1900	-0.0031	0.0024	0.0091	PASS
2000	-0.0036	0.0019	0.0085	PASS
2100	-0.0045	0.0016	0.0082	PASS
2200	-0.0050	0.0018	0.0077	PASS
2300	-0.0054	0.0023	0.0073	PASS
2400	-0.0052	0.0031	0.0075	PASS
2500	-0.0048	0.0039	0.0080	PASS
2600	-0.0040	0.0050	0.0087	PASS
2700	-0.0032	0.0060	0.0094	PASS
2800	-0.0024	0.0071	0.0103	PASS
2900	-0.0014	0.0082	0.0113	PASS
3000	-0.0004	0.0095	0.0124	PASS

Figure 3-16 shows an example of typical verification results with Measurement Plots selected in the Printer Output area of the System Verification windows. The printed graphical results show the following:

- the name of the device measured
- the serial number of the device
- the parameters measured
- Results of the measurements. Labeled as A in Figure 3-16.
- Data measured at the factory from the verification kit. Labeled as B in Figure 3-16.
- Upper and lower limit points as defined by the total system uncertainty system. Labeled as C in Figure 3-16.

Figure 3-16 Example of Printed Graphical Verification Results

Performance Tests (Agilent N2721A Software Package)

The Agilent N2721A software package verifies the electrical performance of your E8364B PNA series microwave network analyzer. The software automatically configures your analyzer to execute the performance tests. The N2721A software package is not included with the analyzer; it must be ordered separately. The model numbers of the equipment used are specified under "Required Service Test Equipment" on page 2-7.

There are nine tests in the software package:

- Source Power Accuracy Test
- Source Power Linearity Test
- Frequency Accuracy Test
- Trace Noise Test
- Receiver Compression Test
- Noise Floor Test
- Calibration Coefficient Test
- System Crosstalk Test
- Dynamic Accuracy Test

Source Power Accuracy Test

Function of the Test: To confirm the accuracy of the source output power of your network analyzer over its full frequency range.

Specification Tested: Test Port Output-Power Level Accuracy
Equipment Used: A power meter, power sensors, and adapters.

Description of the Test:

1. The analyzer's output power level is set to 0 dBm .
2. A power sensor is connected to Port 1.
3. The output power is measured at hundreds of CW frequencies across the analyzer's frequency range and the values compared to the setting of 0 dBm .

If the Analyzer Fails this Test:

- Perform the "Source Calibration Adjustment" on page 3-43 and repeat this test.
- If the analyzer still fails this test, replace the source assembly and repeat this test. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.

Source Power Linearity Test

Function of the Test: To verify that the power level is linear over the analyzer's frequency range and to check the linearity of the automatic leveling control (ALC).
Specification Tested: Power Sweep Range and Power Level Linearity
Equipment Used: A test cable. (And a 20 dB pad if the analyzer does not have an internal step attenuator.)

Description of the Test:

1. The Port 2 receiver is used to test Port 1. The receiver linearity is the standard against which the source linearity is checked.
2. A test cable is connected between Port 1 and Port 2 with 20 dB of attenuation in series with the cable. This can be done with an internal step attenuator or an external 20 dB pad. This attenuation ensures that the receiver remains in its linear range.
3. The analyzer is set to 25 different points across its frequency range.
4. At each frequency point, the output power level on Port 2 is set to 0.000 dBm and the power is measured to establish a reference, $\mathrm{P}_{\text {reference }}$.
5. The source setting is then stepped from -15 to +10 dBm in 1 dB steps and the power is measured, $P_{\text {measured, }}$ at each setting.
6. The non-linearity in dB at each frequency point is calculated as:
($\mathrm{P}_{\text {measured }}-\mathrm{P}_{\text {reference }}$) - (source setting)

If the Analyzer Fails this Test:

- Perform the "Source Calibration Adjustment" on page 3-43 and repeat this test.
- If the analyzer still fails this test, replace the source assembly and repeat this test. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.

Frequency Accuracy Test

Function of the Test: To verify the frequency accuracy and range of the analyzer's source output.

Specification Tested: Test Port Output-CW Accuracy

Equipment Used: A frequency counter, a test cable, and adapters.

Description of the Test:

1. Port 1 is connected to a frequency counter.
2. A series of frequencies across the band are checked.

If the Analyzer Fails this Test:

- Verify the accuracy of the 10 MHz OCXO by connecting a frequency counter to the rear-panel 10 MHz REF OUT.
- If the 10 MHz reference is off by more than 10 Hz , perform the " 10 MHz Frequency Reference Adjustment" on page 3-49 and also the " 3.8 GHz PMYO Frequency Adjustment" on page 3-50 and repeat this test.

Trace Noise Test

Function of the Test: To measure the stability of a signal in the internal source and receiver system of your analyzer.

Specification Tested: Test Port Input-Trace Noise Magnitude and Trace Noise Phase
Equipment Used: A test cable.
Description of the Test:

1. Port 1 and Port 2 are connected with a test cable.
2. The analyzer is set to a series of CW frequencies across its frequency range.
3. Magnitude and phase are measured at each frequency at both 1 kHz and 10 kHz IF bandwidths, in both directions.
4. All measurements are made at a nominal power level of 0 dBm and with 201 points per sweep.

If the Analyzer Fails this Test:

- Repeat this test. It is unlikely for the analyzer to fail this test without a complete failure of the network analyzer system.
- If the analyzer still fails this test, perform the "Receiver Calibration Adjustment" on page 3-44 and repeat this test.

Receiver Compression Test

Function of the Test: To measure the compression at the analyzer's specified maximum power level for the receivers.
Specification Tested: Test Port Input-Maximum Test Port Input Level
Equipment Used: The compression test set (Z5623A Option K01), a power meter, power sensors, two test cables, and a calibration kit. (And $10-\mathrm{dB}$ and $20-\mathrm{dB}$ pads if the analyzer does not have an internal step attenuator.)

Description of the Test:

1. All measurements are made with a 1 kHz IF bandwidth and 201 points per sweep.
2. The measurements are made separately on each port.
3. The analyzer is set to various CW frequencies across the range of the analyzer.
4. A power sensor is connected to the "signal source point" to be used to test the port. The "signal source point" may be either the port connector itself, when a short is used, or the end of the test cable, when the compression test set is used to source the test signal.
5. The analyzer source output level is adjusted to create the maximum power level specified for the receiver.
6. The power sensor is disconnected and the "signal source point" is connected to the port to be tested.
7. The absolute \log magnitude value (dBm) for the reference channel on the source port is read.
8. The log magnitude ratioed measurement using the receiver under test is read: $\left(\mathrm{P}_{\mathrm{a}}\right)$.
9. The source output level is adjusted to decrease the output by 15 dB .
10. The log magnitude ratioed measurement using the receiver under test is read: $\left(\mathrm{P}_{\mathrm{b}}\right)$.
11. Attenuation of 20 dB is introduced between the source and receiver. This can be done with an internal step attenuator, an external 10 dB pad (if a short is being used to reflect the signal back into the port), or an external 20 dB pad (if the signal source is the compression test set).
12. The log magnitude ratioed measurement using the receiver under test is read: $\left(\mathrm{P}_{\mathrm{c}}\right)$.
13. The source output level is adjusted to produce a reading of Pref (within $\pm 0.03 \mathrm{dBm}$) for the reference channel on the source port.
14. The log magnitude ratioed measurement using the receiver under test is read: $\left(\mathrm{P}_{\mathrm{d}}\right)$.
15. The compression in $d B=\left(P_{a}-P_{b}\right)-\left(P_{d}-P_{c}\right)$.

If the Analyzer Fails this Test:

- Repeat this test. There are no adjustments that can be made.
- Since all four receivers are identical, the suspect failed receiver can be swapped with one of the other receivers to verify that it is faulty. Swap the suspect receiver and repeat this test. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules" on page 7-50.
- If the faulty channel "follows" the receiver, replace the receiver. If the same channel (now with a different receiver) is still faulty, suspect the associated cabling.

Noise Floor Test

Function of the Test: To measure the absolute power level of the noise floor for the analyzer's receivers.
Specification Tested: Test Port Input-Test Port Noise Floor
Equipment Used: A power meter, power sensor, a calibration kit, and a test cable.

Description of the Test:

1. The analyzer is set to various CW frequencies across its frequency range at an IF bandwidth of 1 kHz and 801 points per sweep.
2. A test cable is connected to the driving port for the measurement and a power sensor is connected to the other end of the cable.
3. The power level at the end of the cable is set to -5.00 dBm .
4. The power sensor is disconnected and the cable is connected to the port to be tested.
5. The absolute power level in dBm (log magnitude) is read: $\left(\mathrm{P}_{\text {log }}\right)$.
6. The test cable is removed and loads are connected to both ports.
7. The analyzer's trace is set to represent the absolute power level (linear magnitude) for the receiver under test and a sweep is taken.
8. The mean of the points on the trace, in watts, is read: $\left(\mathrm{P}_{\text {lin }}\right)$.
9. Average power in dBm is calculated: $\mathrm{P}_{\mathrm{dBm}}=10 * \log 10\left(\mathrm{P}_{\mathrm{lin}} * 1000\right)$.
10. Corrected noise floor in dBm for a 10 Hz IF bandwidth $=\mathrm{P}_{\mathrm{dBm}}-19.96 \mathrm{~dB}-\left(5.00-\mathrm{P}_{\mathrm{log}}\right)$.

If the Analyzer Fails this Test:

- A failure of this test indicates a failure of one or more of the following assemblies.
- A31 channel A receiver
- A34 channel B receiver
- A6 SPAM board
- Since all four receivers are identical, the channel A and channel B receivers can be swapped with the channel R1 and channel R2 receivers to determine if they are the cause of the failure. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules" on page 7-50. After swapping the receivers, repeat this test.
- If the analyzer still fails this test, replace the A6 SPAM board and repeat this test. Refer to "Removing and Replacing the A6, A8, and A10 Boards" on page 7-18.

Calibration Coefficient Test

Function of the Test: To verify the uncorrected calibration coefficients of your analyzer. The calibration coefficients are measured in forward and reverse direction. Refer to Appendix A, "Error Terms," for error term information relating to the calibration coefficients measured.

Specification Tested: Uncorrected System Performance
Equipment Used: A calibration kit and a test cable.

Description of the Test:

1. A series of 2-port calibrations are performed. Two full SOLT 2-port calibrations are performed on each port. Isolation is turned off during each 2 -port calibration.
2. A test cable is attached to the first port, and a calibration is performed at the end of the cable and at the second port. The cable is moved to the second port and another calibration is performed. Using two calibrations helps to eliminate the unknown characteristics of the through cable.
3. Each calibration produces 12 error terms.
4. The error terms are used to determine the following characteristics: directivity, source match, load match, reflection tracking, and transmission tracking.

If the Analyzer Fails this Test:

- If the analyzer fails tracking error terms only, perform "Receiver Calibration Adjustment" on page 3-44 and repeat this test.
- Failure of any other error terms indicate a hardware failure. Refer to the appropriate error term discussion in Appendix A, "Error Terms," for a typical cause of failure. Refer to Chapter 7, "Repair and Replacement Procedures," for instructions on replacing the suspected faulty component or assembly.

System Crosstalk Test

Function of the Test: To measure the level of signal leakage between the analyzer's test ports.

Specification Tested: Test Port Input-Crosstalk
Equipment Used: A calibration kit and a test cable.

Description of the Test:

1. The analyzer is tested in both directions at various frequency segments.
2. The analyzer sweep is set for the desired frequency and number of points at a 10 Hz IF bandwidth. The power level is set to the lesser of either the maximum specified power level for the driving port or the maximum input power level for the receiving port.
3. A test cable is connected between the driving and receiving ports.
4. The analyzer is set for a ratioed through measurement (S21 for example) with log magnitude display and a sweep is taken and stored to memory (MEM).
5. The trace is set to data divided by memory (DATA/MEM).
6. The test cable is removed and shorts are placed on both ports.
7. The average of 16 sweeps is taken.
8. The resultant log magnitude trace represents the system crosstalk in dB for the frequency range or segment tested.

If the Analyzer Fails this Test:

- A failure of this test usually indicates one of the following:
- a loose cable connection
- degradation of signal isolation in the receivers
- degradation of signal isolation on the A35 receiver motherboard
- Remove the covers from the analyzer and tighten all RF cable connections and tighten all screws on the receivers and repeat this test. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules" on page 7-50 for instructions on how to remove the covers and for illustrations of the cable and screw locations.
- If the analyzer still fails this test, replace the receiver associated with the port that is failing and repeat this test. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules" on page 7-50.
- If the analyzer still fails this test, replace the A35 receiver motherboard and repeat this test. Refer to "Removing and Replacing the A35 Receiver Motherboard" on page 7-52.

Dynamic Accuracy Test

Function of the Test: To measure the relative power linearity of the analyzer's receivers.
Specification Tested: Test Port Input-Dynamic Accuracy

Equipment Used: The dynamic accuracy test set (Z5623A Option H01), a power meter (E4418B or E4419B Option G12 or Option H12) ${ }^{1}$, power sensors, and two test cables.

Description of the Test:

1. The analyzer's test ports are tested separately at a specific CW frequency and a reference power level of -20 dBm .
2. The analyzer's driving port is connected to the dynamic accuracy test set's source port and the analyzer's receiving port is connected to the dynamic accuracy test set's receiver port. A power sensor is connected to the dynamic accuracy test set's power meter port.
3. The dynamic accuracy test set is used to input a signal from the driving port on the analyzer. The input signal is routed through step attenuators to both the analyzer and a power sensor.
4. The analyzer source and the dynamic accuracy test set create power levels that are "deltas" from the reference power level of -20 dBm . Each delta is measured two ways: by the power sensor and by the analyzer's receiver under test.
5. The analyzer's power level into the port under test is set to the -20 dBm reference level.
6. The power level is measured with the power sensor: $\left(\mathrm{P}_{\mathrm{mr}}\right)$.
7. The power level is measured using the analyzer's receiver under test: $\left(P_{p r}\right)$.
8. The power level into the analyzer's port under test is stepped, in 5 dB steps, over the range of 0 to -120 dBm . Each power level represents a "delta" from the reference power level.
9. At each step, the power level is measured using the power meter: $\left(P_{m d}\right)$.
10. At each step, the power level is measured using the receiver under test: $\left(P_{p d}\right)$.
11. The power error in $\mathrm{dB}=\left(\mathrm{P}_{\mathrm{mr}}-\mathrm{P}_{\mathrm{md}}\right)-\left(\mathrm{P}_{\mathrm{pr}}-\mathrm{P}_{\mathrm{pd}}\right)$.

If the Analyzer Fails this Test:

- A failure of this test indicates a failure of one or more of the following assemblies.
- A31 channel A receiver
- A34 channel B receiver
- A6 SPAM board
- Since all four receivers are identical, the channel A and channel B receivers can be swapped with the channel R1 and channel R2 receivers to determine if they are the cause of the failure. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules" on page 7-50. After swapping the receivers, repeat this test.
- If the analyzer still fails this test, replace the A6 SPAM board and repeat this test. Refer to "Removing and Replacing the A6, A8, and A10 Boards" on page 7-18.

[^3]
Power Meter Accuracy Test

This test is intended for power meters used in testing the PNA series network analyzers. The "Dynamic Accuracy Test" requires the use of a power meter that has been calibrated to a higher accuracy than the standard power meter.

Power meters with options G12 and H12 specify an improved instrumentation accuracy over a limited power range. (These power meters do not contain unique hardware.) A power meter may be returned to the factory to have one of these options added to an existing power meter or to renew the calibration for one of these options.
This test procedure is an alternative to returning the power meter to the factory. When a power meter passes this test, it is considered to be calibrated for the G12 or H12 option even though it has not been returned to the factory.
This test procedure is available on the Internet as a separate document, Agilent Part Number E8356-90051. The on-line document may have a more recent print date. Refer to "Contacting Agilent" on page 2-10 for the Internet address (URL).

EPM Series Power Meters That Can Be Tested Using This Procedure

This procedure assumes that the recommended model number power meter is being tested. The alternate model numbers can be tested but the necessary procedural steps may differ.

Recommended Model Number	Alternate Model Numbers
E4419B	E4418A/B, E4419A, EPM-441A, EPM-442A

NOTE It is recommended that the revision number for the power meter "Main Firmware" be Ax. 03.00 or higher. This applies to all power meter model numbers listed above (both recommended and alternate).

Equipment Used for the Power Meter Accuracy Test

Equipment Type	Recommended Model or Part Number	Alternate Model or Part Number
Range calibrator	11683 A	None
Precision digital voltmeter	3458 A	Any with the required accuracy and resolution
Power sensor cable	$8120-8319,11730 \mathrm{~A}$	Any equivalent
Cable, BNC, 50Ω	Any	Any
Adapter for connecting BNC cable to DVM inputs	Any	Any

a. Required accuracy and resolution at the following voltage levels:

14 mV input:	0.0100% accuracy	10 nV resolution
0.140 V input:	0.0050% accuracy	100 nV resolution
0.450 V input:	0.003% accuracy	100 nV resolution

Description of the Test

The power meter accuracy is verified for various power inputs and the actual readings are recorded in a test record. A range calibrator is used to provide the reference inputs.

NOTE It is recommended that a copy of the test record on page 3-41 be made, and the values be recorded on the copy, thus preserving the original for future use.

Test Procedure

NOTE This procedure assumes the use of the recommended equipment model numbers. The actual steps required, therefore, may differ for other model numbers of equipment used.

1. Setup the equipment as shown in Figure 3-17:
a. Connect the DC REFERENCE OUTPUT connector on the rear panel of the range calibrator to the DVM voltage input.
b. Connect the POWER METER output of the range calibrator to the input of the power meter being tested.
c. Switch on the power to the power meter, the range calibrator, and the digital voltmeter.

Figure 3-17 Setup for the Power Meter Accuracy Test

2. Preset the power meter: Press [Preset/Local], then Confirm.
3. Perform the following steps for each channel on the power meter:
a. Set to read in dBm: Press [dBm/W], then dBm.
b. Set the ref cal factor to 100% : Press [Zero/Cal], CaI, A/B Ref CF, then set to 100.0, if necessary.
c. Set the cal factor to 100% : Press [Frequency/Cal Fac], A/B Cal Fac, then set to 100.0, if necessary.
d. Set readout to 0.001 dBm : Press [Meas Setup], then Resolution 123 4, to highlight 4.
e. Set filter step detect on and filter length to 512: Press [System/Inputs], channel A or B Input Settings, [More], Ch A/B Filter, Step Det On, Filter On, Mode MAN, Length, then set the filter length to 512.
4. Setup the digital voltmeter (DVM) as follows:
a. Reset the DVM: Press the blue key followed by Reset.
b. Set the sample period to a value greater than one second: Press NPLC, 5, 0, then Enter.
5. Set the range calibrator controls as follows:

POLARITY .
NORMAL
RANGE.
1 mW
FUNCTION
CALIBRATE
6. Allow the equipment to warm up for approximately 30 minutes. Do not change any connections or control settings during this time.
7. Zero and calibrate the power meter channel to which the range calibrator is connected:
a. The range calibrator's RANGE switch should be set to 1 mW .
b. Set the range calibrator's FUNCTION switch to STANDBY.
c. Press [Zero/Cal], then Zero A or Zero B (as appropriate). Wait for the operation to complete.
d. Set the range calibrator's FUNCTION switch to CALIBRATE.
e. Press [Zero/Cal], Cal, then Cal A or Cal B (as appropriate). Wait for the operation to complete.
8. Monitor the drift rate of the power meter reading: Five minutes following calibration, the meter must read $0.001,0.000$, or -0.001 dBm . If the power meter reading is not one of these values, allow additional warm up time, then check the drift rate again. The range calibrator must remain connected to the power meter during this warm up time.
9. Zero and calibrate the power meter channel to which the range calibrator is connected:

NOTE After a channel on the power meter is calibrated, do not allow more than 5 minutes to elapse before completing the remaining measurement steps for that channel.
a. The range calibrator's RANGE switch should be set to 1 mW .
b. Set the range calibrator's FUNCTION switch to STANDBY.
c. Press [Zero/Cal], then Zero A or Zero B (as appropriate). Wait for the operation to complete.
d. Set the range calibrator's FUNCTION switch to CALIBRATE.
e. Press [Zero/Cal], Cal, then Cal A or Cal B (as appropriate). Wait for the operation to complete.
10. Record the DVM voltage reading as value A in the test record on page 3-41.

NOTE All DVM readings in this procedure should be recorded showing five significant digits.
11. The reading on the power meter should be $0.000 \pm 0.001 \mathrm{dBm}$.
12. Switch the range calibrator RANGE to $300 \mu \mathrm{~W}$.
13. Record the DVM voltage reading as value B in the test record.
14. Wait for the power meter reading to settle (no settling drift within 20 seconds).
15. Record the power meter reading as value C in the test record.
16. Switch the range calibrator RANGE to $100 \mu \mathrm{~W}$.
17. Record the DVM voltage reading as value D in the test record.
18. Wait for the power meter reading to settle (no settling drift within 20 seconds).
19. Record the power meter reading as value E in the test record.
20. If testing a dual-channel power meter, perform steps 7 through 19 for the other channel.
21. Perform the pass/fail calculations indicated on the test record.

NOTE	If a channel of the power meter does not pass this test, the power meter cannot be used in applications that require Option G12 or H12. There are no adjustments that can be performed to improve the performance of the power meter. Typically, replacing the A6 measurement assembly associated with the failed channel will correct the problem.

TEST RECORD FOR POWER METER ACCURACY TEST

Power Meter Tested: Model No.:

Serial No:

Date:
Tested by:

	Test Equipment Used		
Range Calibrator:	Model No.:	$\mathbf{1 1 6 8 3 A}$	Serial No.:
	Model No.:	Serial No.:	

Test Results

Range Calibrator Setting	Channel A		Channel B	
	DVM Reading (Vdc)	Power Meter Reading (dBm)	DVM Reading (Vdc)	Power Meter Reading (dBm)
1 mW	$\mathrm{~A}=$	0.000 ± 0.001	$\mathrm{~A}=$	0.000 ± 0.001
$300 \mu \mathrm{~W}$	$\mathrm{~B}=$	$\mathrm{C}=$	$\mathrm{B}=$	
$100 \mu \mathrm{~W}$	$\mathrm{D}=$	$\mathrm{E}=$	$\mathrm{D}=$	

Pass/Fail Calculations

$300 \mu \mathrm{~W}$	$\mathrm{R}=\mathrm{B} / \mathrm{A}=$ \qquad $\mathrm{S}=10^{(\mathrm{C} / 10)}=$ \qquad $\% \text { ERROR }=((\mathrm{R}-\mathrm{S}) / \mathrm{R}) \times 100=$ $\text { Limits: } \pm 0.13 \%$	\%	$\begin{aligned} & \mathrm{R}=\mathrm{B} / \mathrm{A}= \\ & \mathrm{S}=10^{(\mathrm{C} / 10)}= \\ & \% \mathrm{ERROR}=((\mathrm{R}-\mathrm{S}) / \mathrm{R}) \times 100= \\ & \text { Limits: } \pm 0.13 \% \\ & \text { Pass } \square \quad \text { Fail } \square \end{aligned}$
$100 \mu \mathrm{~W}$	$\begin{aligned} & \mathrm{T}=\mathrm{D} / \mathrm{A}= \\ & \mathrm{U}=10^{(\mathrm{E} / 10)}= \\ & \% \text { ERROR }=\overline{((\mathrm{T}-\mathrm{U}) / \mathrm{T}) \times 100=} \\ & \text { Limits: } \pm 0.10 \% \\ & \text { Pass } \square \quad \text { Fail } \square \end{aligned}$	\%	$\begin{aligned} & \mathrm{T}=\mathrm{D} / \mathrm{A}= \\ & \mathrm{U}=10^{(\mathrm{E} / 10)}= \\ & \% \text { ERROR }=((\mathrm{T}-\mathrm{U}) / \mathrm{T}) \times 100= \\ & \text { Limits: } \pm 0.10 \% \\ & \text { Pass } \square \quad \text { Fail } \square \end{aligned}$

Adjustments

These adjustments are firmware-driven tests that are used to fine-tune your analyzer for optimum response. The tests are as follows:

- "Source Calibration Adjustment" on page 3-43
- "Receiver Calibration Adjustment" on page 3-44
- "LO Power Adjustment" on page 3-47
- "10 MHz Frequency Reference Adjustment" on page 3-49
- "3.8 GHz PMYO Frequency Adjustment" on page 3-50

Source Calibration Adjustment

The source calibration is used to adjust your network analyzer for a flat source power across its full frequency range. The differences between Port 1 and Port 2 are negligible; therefore, a Port 2 adjustment is not required.

Equipment Used for the Source Calibration Adjustment

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Power meter	All	E4418B/E4419B	E4418A/E4419A
Power sensor, 3.5 mm	E8362B	E4413A	8485 A
Adapter, $3.5 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{f})$	E8362B	83059 B	$85052-60012$
Power sensor, 2.4 mm	E8363B, E8364B	8487 A	None
Adapter, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	E8363B, E8364B	11900 B	$85056-60007$

Procedure

1. Connect the equipment as shown in Figure 3-18. Connect a GPIB cable between the network analyzer and the power meter.

Figure 3-18 Setup for the Source Calibration Adjustment

2. On the System menu, point to Service, Adjustments, and then click Source Calibration.
3. Ensure the GPIB settings are correct.
4. Click Calibrate, and then follow the instructions as they are displayed.

Receiver Calibration Adjustment

The receiver calibration is used to adjust the network analyzer receivers for a flat response across its full frequency range:

1. A power meter/sensor is connected to Port 1, as shown in Figure 3-19, to establish a reference for flatness.
2. A cable is inserted between the power sensor and the test port, as shown in Figure 3-20, to establish a reference for the cable.
3. The same cable is connected between the two test ports, as shown in Figure 3-21, and a signal from Port 1 is used to adjust the "B" receiver at Port 2.

The adjustment is repeated using a signal from Port 2 to adjust the "A" receiver at Port 1.

Data obtained during this adjustment are stored in the mxcalfile_pxx files on the hard disk drive (where $x x$ is a 1 or 2 digit number). The data are used in subsequent measurements.

If the hard disk drive is replaced, these mxcalfile_pxx files will be lost. Therefore, they should be backed up (saved on a floppy disk) so that they can be restored.

These files can be recreated by performing another receiver calibration adjustment.
Equipment Used for the Receiver Calibration Adjustment

Equipment Type	Models Used With	Model or Part Number	Alternate Model Part Number
Power meter	All	E4418B/E4419B	E4418A/E4419A
Power sensor, 3.5 mm	E8362B	E4413A	8485 A
Adapter, $3.5 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{f})$	E8362B	83059 B	$85052-60012$
RF Cable, 3.5 mm (f) to 3.5 mm (f)	E8362B	85131 C	85131 E
Power sensor, 2.4 mm	E8363B, E8364B	8487 A	None
Adapter, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	E8363B, E8364B	11900 B	$85056-60007$
RF Cable, 2.4 mm (f) to 2.4 mm (f)	E8363B, E8364B	85133 C	85133 E

Procedure

1. Connect the equipment as shown in Figure 3-19. Connect a GPIB cable between the network analyzer and the power meter.

Figure 3-19 Setup 1 for the Receiver Calibration Adjustment

2. On the System menu, point to Service, Adjustments, and then click Receiver Calibration.
3. Ensure the GPIB settings are correct.
4. Click Calibrate, and then follow the instructions as they are displayed.

Figure 3-20 Setup 2 for the Receiver Calibration Adjustment

Figure 3-21 Setup 3 for the Receiver Calibration Adjustment
NETWORK ANALYZER

st509a

LO Power Adjustment

The LO power adjustment is used to adjust the power level of the LO signals from the A20 LO distribution assembly. This adjustment is done for only one LO output. The differences between each LO output is negligible; therefore, separate adjustments are not required.

Equipment used for the LO Power Adjustment

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Power meter	All	E4418B/E4419B	E4418A/E4419A
Power sensor, 3.5 mm	E8362B	E4413A	8485 A
Power sensor, 2.4 mm	E8363B, E8364B	8487 A	None
Adapter, $2.4 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{~m})^{\mathrm{a}}$	E8363B, E8364B	11901 D	None
$5 / 16-i n c h, ~ o p e n-e n d ~ t o r q u e ~ w r e n c h ~$ (set to 10 in-lbs)	All	N/A	N/A
1/4-inch, open-end wrench	All	N/A	N/A

a. Required only if using the 8487 A power sensor.

Procedure

1. Turn off the network analyzer and remove the power cable and other external cables from the rear panel.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. Place the analyzer on its side to allow access to the bottom of the analyzer.
4. Connect the equipment as shown in Figure 3-22. Connect a GPIB cable between the analyzer and the power meter.
5. With a $5 / 16$-inch open-end wrench, loosen W40 at the first converter (mixer).
6. At the junction of W 40 and W 14 , place a $5 / 16$-inch wrench on the W 40 connector and a $1 / 4$-inch wrench on the W14 connector. While holding the 1/4-in wrench to prevent W14 from rotating, disconnect W40 from W14 and move W40 aside.
7. Connect the power sensor to the end of W14, as shown in Figure 3-22.

Figure 3-22 Setup for the LO Power Adjustment

NETWORK ANALYZER

8. Reconnect the power and USB cables. Turn on the analyzer.
9. On the System menu, point to Service, Adjustments, and then click LO Power Adjust.
10. Ensure the GPIB settings are correct.
11. Click Begin Adj, and then follow the instructions as they are displayed.
12. Turn off the analyzer, disconnect the power cable, reconnect the semi-rigid cables, and replace the covers.

10 MHz Frequency Reference Adjustment

The 10 MHz frequency adjustment is used to adjust the frequency accuracy of the network analyzer's 10 MHz frequency reference on the A10 frequency reference board assembly.

Equipment Used for the Frequency Adjustment at 10 MHz

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Cable, BNC, $50 \Omega, 24$ inch	All	$8120-1839$	Any
Frequency counter	All	53151 A Opt 001	Any $^{\mathrm{a}}$

a. Must be capable of measuring a signal at 10 MHz .

Procedure

NOTE \quad The specification of frequency accuracy is $\pm 1 \mathrm{ppm}$. However, this test typically adjusts to $\pm 0.01 \mathrm{ppm}$.

1. Connect the equipment as shown in Figure 3-23. Connect a GPIB cable between the network analyzer and the frequency counter.

Figure 3-23 Setup for Adjustment of the 10 MHz Frequency Reference

st511a
2. On the System menu, point to Service, Adjustments, and then click 10 MHz Freq Adjust.
3. Ensure the GPIB settings are correct.
4. Click Begin Adj, and then follow the instructions as they are displayed.

3.8 GHz PMYO Frequency Adjustment

The 3.8 GHz adjustment is used to adjust the frequency accuracy of the network analyzer's 3.8 GHz permanent-magnet YIG oscillator (PMYO) on the A12 source 20.

Equipment used for the Frequency Adjustment at $3.8 \mathbf{~ G H z}$

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	All	8565 E	$856 \mathrm{xE}^{\mathrm{a}}$
RF Cable, $3.5 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{f})$	E8362B	85131 C	85131 E
Adapter, $3.5 \mathrm{~mm}(\mathrm{~m})$ to type-N (m)	E8362B	$1250-1743$	None
RF Cable, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	E8363B, E8364B	85133 C	85133 E
Adapter, $2.4 \mathrm{~mm}(\mathrm{~m})$ to type-N (m)	E8363B, E8364B	11903 A	None

a. Must be capable of measuring a signal at 3.8 GHz .

Procedure

1. Connect the equipment as shown in Figure 3-24. Connect a GPIB cable between the network analyzer and the spectrum analyzer.

Figure 3-24 Setup for Adjustment of the $3.8 \mathbf{G H z}$ PMYO

RF Cable
st512a
2. On the System menu, point to Service, Adjustments, and then click 3.8 GHz Freq Adjust.
3. Ensure the GPIB settings are correct.
4. Click Begin Adj, and then follow the instructions as they are displayed.

4 Troubleshooting

Information in This Chapter

The information in this chapter helps you:

- Identify the portion of the analyzer at fault.
- Locate the specific troubleshooting procedure to identify the assembly or peripheral at fault.

The sections in this chapter are arranged in a logical troubleshooting order. The following table lists the sections and a brief summary of what to look for in that section.

Chapter Four at-a-Glance

Section Title	Summary of Content	Start Page
‘Getting Started with Troubleshooting'	A starting point to begin troubleshooting.	Page 4-4
'Power Up Troubleshooting'	Power-up problems: - Power supply problems - LCD problems - Bootup for the network analyzer interface	Page 4-6
'Front Panel Troubleshooting'	Problems occurring after the network analyzer interface is loaded: - Does the display color appear correct? - Do the front panel keys function properly? - Does the front panel USB connector function properly?	Page 4-17
'Rear Panel Troubleshooting'	Problems associated with the rear panel interconnects. The data found at these rear panel interconnects can be used to troubleshoot the CPU board.	Page 4-21
'Measurement System Troubleshooting'	Problems with the measurement portion of the analyzer. - Checking the $\mathrm{A}, \mathrm{B}, \mathrm{R} 1$, and R2 signals. - Checking the source group. - Checking the receiver group. - Checking the signal separation group. - Checking the frequency offset group (Option 080).	Page 4-28
Instrument Block Diagrams	Block diagrams for the analyzer including Option UNL and Option 014.	Page 4-57

Protect Against Electrostatic Discharge (ESD)

This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.

CAUTION To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page 1-5, for all of the procedures in this chapter.

Assembly Replacement Sequence

After identifying the problem requiring an assembly to be replaced, follow these steps:
Step 1. Order a replacement assembly. Refer to Chapter 6, "Replaceable Parts."
Step 2. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 7, "Repair and Replacement Procedures."

Step 3. Perform the necessary adjustments. Refer to Chapter 3, "Tests and Adjustments."
Step 4. Perform the necessary performance tests. Refer to Chapter 3, "Tests and Adjustments."

Getting Started with Troubleshooting

Where you begin troubleshooting depends upon the symptoms of the failure. Start by checking the basics as outlined in the following section. Also review the flowchart in Figure $4-1$ on page $4-5$. You should then be able to determine where in the troubleshooting procedure to begin, to locate the failed assembly.

Check the Basics

A problem can often be solved by repeating the procedure you were following when the problem occurred. Before calling Agilent Technologies or returning the instrument for service, please perform the following checks:

1. Is there power at the mains receptacle? If not, correct this situation and proceed.
2. Is the instrument turned on? Check to see if the front panel line switch glows. This indicates the power supply is on. If the front panel line switch is on but the power supply does not appear to be on, go to "Power Up Troubleshooting" on page 4-6.
3. Is the Windows® operating system running? If not, refer to Appendix D, "Operating System Recovery," for instructions.
4. If other equipment, cables, and connectors are being used with the instrument, make sure they are clean, connected properly and operating correctly.
5. If the PNA has Option 014, verify that the cables are connected properly.
6. Review the procedure for the measurement being performed when the problem appeared. Are all the settings correct? If not, correct them.
7. If the instrument is not functioning as expected, return the unit to a known state by pressing the Preset key.
8. Is the measurement being performed, and the results that are expected, within the specifications and capabilities of the instrument? Refer to the embedded help in the analyzer for instrument specifications.
9. If the problem is thought to be due to firmware, check to see if the instrument has the latest firmware before starting the troubleshooting procedure. Refer to Appendix C, "Firmware Upgrades," for instructions.
10.If the necessary test equipment is available, perform the operator's check and system verification in Chapter 3, "Tests and Adjustments."

Windows® is a U.S. registered trademark of Microsoft Corporation.

Troubleshooting Organization

Follow the flowgraph in Figure 4-1 to help direct you to the correct section for troubleshooting the analyzer.

Figure 4-1 Troubleshooting Organization Flowchart

Power Up Troubleshooting

WARNING Immediately unplug the instrument from the ac power line if the unit shows any of the following symptoms:

- Smoke, arcing, or unusual noise from inside the analyzer.
- A circuit breaker or fuse on the main ac power line opens.

Check your network analyzer for evidence that it is powering up correctly. Perform the following steps and make sure that the analyzer is displaying correct behavior as noted in the following steps.

Step 1. Disconnect all peripherals and plug in the network analyzer. Before the analyzer is powered on, the line switch should glow yellow and no other lights should be on.

Step 2. Turn on the network analyzer.

- The line switch should glow green.
- The fans should be audible.
- The display should flash and then show the hardware boot-up sequence. This process checks the RAM and communication with the hard disk drive. These checks return an error message if a problem is detected.
- The Windows 2000 operating system should start.
- The network analyzer measurement interface should open with an S_{11} measurement displayed.

Step 3. If the analyzer powers up correctly, continue troubleshooting with "Front Panel Troubleshooting" on page 4-17.

Step 4. If the analyzer does not power up correctly, follow these troubleshooting steps:

- If the line switch does not glow or the fans are not operating (audible), go to "Power Supply Check" on page 4-7.
- If you cannot hear the fans operating, go to "If the Fans Are Not Operating" on page 4-12.
- If the line switch glows green and the fans are operating (audible), but the display remains dark, go to "Troubleshooting LCD Display Problems" on page 4-13.
- If the instrument appears to abort the network analyzer measurement interface process, contact Agilent. Refer to "Contacting Agilent" on page 2-10.

Power Supply Check

NOTE There are no fuses to replace within the power supply. If you determine that the power supply is the failed assembly, replace the power supply.

A catastrophic failure in the power supply can be determined by observing the line switch, and by measuring the probe power at the front-panel Probe Power connectors:

1. Ensure that the instrument is plugged in with the power switch in the standby position (power not switched on). Verify that the line switch glows yellow. A line switch that glows yellow indicates that the +15 VDC line (P 15 STB) is providing enough voltage to light the LED. (The actual voltage may not be +15 VDC.)
2. Turn on the instrument power and verify that the line switch glows. When the line switch glows, it is an indication that the power supply has received an "ON" command and that the +5.2 VDC supply can supply enough current to light, at least, these lamps.
3. The front-panel probe power-connector can be used to check the +15 VDC and -12.5 VDC (-15 VDC) supplies. The -12.5 VDC is produced by post regulating the -15 VDC supply. Refer to Figure 4-2 for a diagram of the probe power connector.

Figure 4-2 Probe Power Connector

sa869a

If all of these supply voltages are missing, it is likely that the problem is either a defective A4 power supply, or another assembly is loading down the A4 power supply. Continue with "If All Supply Voltages Are Missing" on page 4-10, to determine the cause of the problem.

If the line switch is lit correctly, and the probe power voltages measure within the specifications listed in Table 4-1 on page 4-9, the power supply has not suffered a catastrophic failure; however, the power supply could still be at fault. Continue with the next section to measure the individual voltage supplies.

Measure the Individual Voltage Supplies

WARNING The instrument contains potentially hazardous voltages. Refer to the safety symbols provided on the instrument and in "General Safety Considerations" on page 1-3 before operating the unit with the cover removed. Make sure that the safety instructions are strictly followed. Failure to do so can result in personal injury or loss of life.

To measure the power supply voltages, it is necessary to remove the instrument's outer and inner covers. Refer to "Removing the Covers" on page 7-6 for removal procedures. Use the E8356-60021 extender board to measure the individual power supply voltages. Insert the extender board into an empty slot next to the A6 signal processing ADC module (SPAM) board.

NOTE If any one individual voltage supply from the A4 power supply develops an over-voltage or over-current problem, all supplies are affected. The supply goes into a "burp" mode characterized by the supplies cycling on and off at a low voltage level. The cause of the over-voltage or over-current condition can be the A4 power supply itself, or any assembly to which the A4 power supply provides voltage. To isolate the cause of "burp" mode, continue to the assembly removal process as described in the section titled "If All Supply Voltages Are Missing" on page 4-10.

On the extender board, measure the power supply voltages using a digital voltmeter. Refer to Figure 4-3 for the power supply test points on the extender board. Use the point marked as "GND" for the ground connection. Refer to Table 4-1 on page 4-9 for the correct voltages.

Figure 4-3 E8356-60021 Synthesizer/Reference Extender Measurement Points

Table 4-1 Extender Board Measurement Points

Measurement Location	Signal Description	Test Equipment Used	Expected Level (Vdc)
A	power supply	DVM	+5.0
B	power supply	DVM	-15.0
C	power supply	DVM	-5.0
D	power supply	DVM	+9
E	power supply	DVM	+15
F	power supply	DVM	+15
G	power supply	DVM	+22
H			+32

1. $\mathrm{DVM}=$ Digital volt meter

If All Supply Voltages Are Present

If all of the supplies have measured within tolerances, and the instrument still is not functioning properly, refer to "Rear Panel Troubleshooting" on page 4-21.

If All Supply Voltages Are Missing

WARNING Disconnect the line-power cord before removing any assembly. Procedures described in this document may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury or loss of life.

It is necessary to sequentially remove all of the assemblies, taking care to disconnect the line-power cord before each removal, and then to measure the supply voltages after each removal.

If the missing supply voltages return to a "power on" condition after removal of an assembly, suspect that assembly as being defective.

Remove the network analyzer assemblies in the order specified in the following steps (refer to Chapter 7 for removal instructions).

1. Unplug the test set motherboard cable from the A16 test set motherboard.
2. Unplug the front panel interface cable from the A3 front panel interface board.
3. Remove the A6 SPAM board.
4. Remove the A8 fractional-N synthesizer board.
5. Remove the A10 frequency reference board.
6. Remove the A11 phase lock board.
7. Unplug the A30 floppy disk drive from the A14 system motherboard.
8. Unplug the A31 hard disk drive from the A15 CPU board.

The minimum required assemblies to power up the analyzer are:

- A4 power supply
- A14 system motherboard
- A15 CPU board

To further isolate the failure in the three remaining assemblies, measure the resistance on the extender board (with the power turned off) from the power supply test points to "GND". Refer to Figure 4-3 on page 4-9. The voltages should be as shown in Table 4-2.

NOTE Make sure that the only assemblies plugged in are the three minimum required assemblies listed above.

Check for shorts (zero Ω) or very low resistance (approximately 1Ω). If a short or low resistance is measured, isolate each of the remaining three boards in the following order, and recheck the shorted test point after each board is removed. Note that the resistance may be different from that listed in the table, but you should be able to determine if the shorted condition has changed.

Isolate the remaining three assemblies:

- remove the A15 CPU board
- remove the A4 power supply
- This leaves only the A14 system motherboard installed. If the measurements are still incorrect, this is the suspected faulty assembly.

Table 4-2 Power Supply Voltages and Resistances

Measurement Location	Supply (Vdc)	Approximate Resistance (Ω)
A	+5.0	285
B	-15.0	12.7 k
C	-5.0	7.2 k
D	+9	4.0 k
E	+15	3.0 k
F	+22	2.8 k
G	+22	890
H	+32	2.6 k

If the Fans Are Not Operating

CAUTION The power supply may be in thermal shutdown if the instrument has been operating without the fans running. Allow the instrument to cool down before troubleshooting.

If all three fans are not operating, suspect a power supply problem or a defective A14 system motherboard. Refer to "Power Supply Check" on page 4-7 to check the individual supplies. If the supplies are within specifications, the most probable cause is a defective A14 system motherboard. Refer to "Removing and Replacing the A14 System Motherboard" on page 7-26.

If only one or two fans are not functioning, and the power supplies are within specifications, suspect the A14 system motherboard or a defective fan. Perform the following procedure.

1. Remove the front panel assembly from the instrument. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
2. Refer to Figure 4-4. Measure the fan voltages at J1, J3, and J4 on the A14 system motherboard.

Figure 4-4 Fan Voltages

3. If the correct voltage is present and the fan connector is in good mechanical condition, suspect a defective fan. Refer to "Removing and Replacing the Midweb and the B1 Fan" on page 7-72.
4. If the voltage is not present, suspect a defective A14 system motherboard. Refer to "Removing and Replacing the A14 System Motherboard" on page 7-26.

Troubleshooting LCD Display Problems

This procedure is intended to isolate the faulty assembly when the display is dark. If the display is lit, but the color mix is faulty, refer to "A2 Display Test" on page 4-19.
NOTE \quad There are no front panel adjustments for intensity and contrast of the LCD.

1. If the display is dim, the backlight assembly is defective. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
2. If the display is dark (not visible), connect an external VGA monitor to the rear panel VGA output connector on the instrument. Be aware that some multisync monitors might not be able to lock to a 60 Hz sync pulse. If the video information is not present on the external VGA monitor, the most probable cause is the A15 CPU board. Refer to "Removing and Replacing the A15 CPU Board" on page 7-28.
3. If the external VGA monitor is functioning, verify that the front panel interface ribbon cable is properly plugged into the motherboard connector.
4. If the front panel interface ribbon cable is properly connected, suspect that one or more of the following is defective:

- inverter board (mounted on the display assembly)
- display lamp assembly
- A3 front panel interface board
- A2 display assembly

Refer to the following paragraphs to determine which of the above listed assemblies is defective.

Creating the Test Setup

For easy access to measure the voltages on the inverter board and on the A3 front panel interface board, it is best to disassemble the front panel and remove these two boards to set in front of you for testing. Use the ribbon cables that come with the boards and the analyzer as the supply source. Follow this procedure:

1. Turn off the analyzer.
2. Remove the front panel. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
3. After the front panel is removed from the analyzer, isolate the inverter board by first removing the display assembly. Refer to "Removing the A2 Display Assembly" on page 7-12. Put the A2 display assembly and its ribbon cables aside.
4. Remove the A3 board by referring to "Removing the A3 Front Panel Interface Board" on page 7-12. Put the A3 board aside.
5. Duplicate the board connections on your ESD safe test desk top by laying the A2 and A3 in front of the open-faced analyzer. Lay the A2 and A3 boards component-side down, the A2 to the left of the A3, with the top of the boards towards you.
6. Connect the display ribbon cable and display lamp cable from A2 to A3. Connect the front panel interface ribbon cable coming from the analyzer to the A3 board.
7. Turn the analyzer on and refer to "Verifying the Inverter Board" on page 4-14 and "Verifying the A3 Front Panel Interface Board" on page 4-16 to test and troubleshoot the boards.

Verifying the Inverter Board

WARNING High voltage is present on the inverter board and the A3 front panel interface board. Be careful when measuring signals and voltages on these boards.

1. To access the front panel boards for measurements, it is necessary to remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
Using Figure 4-5 as a reference, measure the signals and voltages indicated in Table 4-3 on page 4-14. If the signals and voltages measure good, the inverter board is functioning correctly.

Figure 4-5 Inverter Board Test Point Locations

sc846a

Table 4-3 Inverter Board, Voltages and Signals

Test Point	Signal or Voltage
CN1 pin 1	+5.1 Vdc
CN1 pin 2	+5.1 Vdc
CN1 pin 3	39 mV
CN1 pin 4	0 V (ground) Point
CN1 pin 5	Signal or Voltage
CN1 pin 6	+2.54 V (ground)
CN2 pin 1	+400 V peak sinewave @ 38 kHz
CN2 pin 5	ac neutral (referenced to pin 1)

After measuring the points CN1 and CN2, match the results and perform the rework as indicated in the action column in Table 4-4.

Table 4-4 Inverter Board Troubleshooting Steps

Input (CN1)	Output (CN2)	Action
Good	Good	Replace the display lamp. Refer to "Removing and Replacing the Display Inverter Board and the Display Lamp" on page 7-14.
Good	Bad	Replace the inverter. Refer to "Removing and Replacing the Display Inverter Board and the Display Lamp" on page 7-14.
Bad	Bad	Refer to "Verifying the A3 Front Panel Interface Board" on page 4-16.

Verifying the A3 Front Panel Interface Board

To verify that the HSYNC (horizontal sync), VSYNC (vertical sync), and LCD clock are functioning correctly, measure the signals listed in Table 4-5 and illustrated in Figure 4-6 on page $4-16$. If all of these signals measure correctly, suspect a defective backlight or LCD. The backlight is the most probable cause.

CAUTION Be careful not to short connector pins together when measuring these signals.
Table 4-5 A3 Front Panel Interface Board, Voltages and Signals

Signal Type	Test Point	Voltage	Signal
HSYNC	J2 pin 3	0 to +3 V	30.8 kHz square wave
VSYNC	J2 pin 4	0 to +3 V	60 Hz square wave
CLOCK	J2 pin 27	0 to +3.4 V pk-to-pk	25 MHz sine wave

Figure 4-6 Verifying HSYNC, VSYNC, and LCD Clock

If any of the three signal types is incorrect, replace the A3 front panel interface board. Refer to "Removing the A3 Front Panel Interface Board" on page 7-12.
If all of the signal types are correct, replace the A2 display assembly. Refer to "Removing the A2 Display Assembly" on page 7-12.

Front Panel Troubleshooting

The front panel assembly consists of the A1 keypad, A2 display, and the A3 front panel interface. The following tests verify the operation of the front panel assembly when the analyzer is in the measurement mode. If the instrument fails to power up correctly, or it is difficult to verify due to a faulty display, refer to "Power Up Troubleshooting" on page 4-6.

Refer to the following sections to verify the operation of the noted assemblies.

- "A1 Front Panel Keypad and RPG Test" below
- "A2 Display Test" on page 4-19
- "A3 Front Panel Interface Board" on page 4-20
- USB
- Speaker
- Probe Power

If all assemblies are working correctly, continue troubleshooting with "Rear Panel Troubleshooting" on page 4-21.

A1 Front Panel Keypad and RPG Test

Test the front panel keypad by running the front panel test. To run the front panel test, perform the following:

On the System menu, point to Service and click Front Panel Test.
A Front Panel Service Test dialog box will be displayed, as shown in Figure 4-7.

Figure 4-7 Front Panel Service Test Dialog Box

Front Panel Service Test 区

Press Macro (extreme lower right) key three consecutive times to exit.
Be sure to close program when done.

Checking the Front Panel Keys

To check the front panel keys, push each key and compare the decimal value in the Value box under Keys to the key values in Table 4-6.

- If all the key values are correct, then the A1 front panel keypad is working. If some of the keys are not working, suspect a faulty A1 keypad. To replace the A1 keypad, refer to "Removing the A1 Keypad Assembly" on page 7-12.
- If none of the keys are working correctly, suspect a faulty A3 front panel interface board. To replace the A3 front panel interface board, refer to "Removing the A3 Front Panel Interface Board" on page 7-12.

Table 4-6 Keyboard Key Numbers

Key Value	Front Panel Key						
50	Tab	66	Measure Setups	82	7	98	1
51	$\underset{\uparrow}{\mathrm{Up}}$	67	F2	83	8	99	2
52	Tab	68	F3	84	6	100	$\begin{aligned} & +/- \\ & \Leftarrow \end{aligned}$
53	Window	69	F4	85	M/u	101	Not Applicable
54	OK	70	Help	86	Cancel	102	Not Applicable
55	Start/ Center	71	Trigger	87	Marker	103	Save
56	$\begin{aligned} & \text { Stop/ } \\ & \text { Span } \end{aligned}$	72	Average	88	Marker Table	104	Maximum Window Icon
57	Power	73	Calibrate	89	Limit Table	105	Preset
58	$\begin{aligned} & \hline \text { Down } \\ & \downarrow \end{aligned}$	74	F1	90	4	106	0
59	Click	75	Not Applicable	91	5	107	\cdots
60	Trace	76	9	92	3	108	Not Applicable
61	Display Configure Icon	77	G/n	93	Enter	109	Not Applicable
62	Not Applicable	78	Menu Dialog	94	Not Applicable	110	Not Applicable
63	Sweep Setup	79	Measure	95	Marker Search	111	Recall
64	Channel	80	Format	96	Marker Function	112	Print Icon
65	$\begin{aligned} & \text { Sweep } \\ & \text { Type } \end{aligned}$	81	Scale	97	Math/ Memory	113	Macro

Checking the RPG (Front Panel Knob)

To check the RPG knob, rotate the knob and check for a fluid movement of numbers in the Velocity box.

- If the movement of numbers in the Velocity box is not smooth or no numbers appear at all, suspect a faulty A3 front panel interface board. To replace the A3 front panel interface board, refer to "Removing the A3 Front Panel Interface Board" on page 7-12.

A2 Display Test

The display should be bright with all annotations and text readable. The display test allows you to check for non-functioning pixels and other problems.

```
NOTE If the display is dim or dark, refer to "Troubleshooting LCD Display
    Problems" on page 4-13.
```


What Is a Damaged Pixel?

A pixel is a picture element that combines to create the image on the display. They are about the size of a small pin point. Damaged pixels can be either "stuck on" or "dark."

- A "stuck on" pixel is red, green, or blue and is always displayed regardless of the display setting. It will be visible on a dark background.
- A "dark" pixel is always dark and will be displayed against a background of its own color.

How to Run the Display Test

To run the display test, perform the following:
On the System menu, point to Service, and then click Display Test.
A multi-color screen is displayed. Be prepared to look for the symptoms described in "How to Identify a Faulty Display," and then click the Start Test button. To continue to the next test, click the moving Next Test button. The button moves to allow you to see all of the display. After the test is completed, the display defaults to the network analyzer screen.

How to Identify a Faulty Display

One or more of the following symptoms indicate a faulty A2 display assembly:

- a complete row or column of "stuck on" or "dark" pixels
- more than six "stuck on" pixels (but not more than three green)
- more than twelve "dark" pixels (but not more than seven of the same color)
- two or more consecutive "stuck on" pixels or three or more consecutive "dark" pixels (but no more than one set of two consecutive dark pixels)
- "stuck on" or "dark" pixels less than 6.5 mm apart (excluding consecutive pixels)

If any of these symptoms occur, replace the A2 display assembly. Refer to "Removing the A2 Display Assembly" on page 7-12.

A3 Front Panel Interface Board

This assembly performs the following functions:

- It routes USB signals between the front-panel USB connector and the A15 CPU board.
- The speaker produces the audio output from signals supplied by the A15 CPU board.
- It supplies power to the two front-panel probe power connectors.
- It routes key pad commands from the A1 keypad to the A15 CPU board.
- It routes display signals from the A15 CPU board to the A2 display assembly.

Checking the USB Port

To verify proper operation of the USB port:

- Connect a known good USB device, such as a USB mouse.
- Wait 15 seconds for the analyzer to verify the device connection, and then check the operation of the USB device.
- If the device performs correctly, the USB port is functioning properly.
- If the device does not perform correctly, the USB port is faulty. Refer to "Removing the A3 Front Panel Interface Board" on page 7-12.

Checking the Speaker

If no audio is heard:

- Verify that the volume is set correctly and the proper sound driver is loaded; do the following:
- On the System menu, point to Configure, and then click Control Panel.
- Click the Sounds and Multimedia icon. Follow the normal Windows procedure to check the sound drivers and volume. If the audio is still not heard, suspect a faulty speaker. Refer to "Removing the A3 Front Panel Interface Board" on page 7-12.

Checking the Probe Power Connectors

To verify the probe power operation, refer to "Power Supply Check" on page 4-7.

Checking the Operation of the Key Pad Commands

To verify the key pad functionality, refer to "A1 Front Panel Keypad and RPG Test" on page 4-17.

Checking the Display

To verify the display functionality, refer to "A2 Display Test" on page 4-19.

Rear Panel Troubleshooting

Each rear panel connector is associated with a hardware group in the analyzer. You can use the data at these rear panel connectors to help troubleshoot these hardware groups in addition to testing the connectors.

The connectors discussed in this section are:

- USB
- SERIAL (RS-232)
- PARALLEL (1284-C)
- VGA
- GPIB
- LAN

Checking the USB Ports

NOTE The rear panel contains five USB ports; one "stand-alone USB port" on the CPU board and a "group-of-four" connected to a separate hub.

To verify proper operation of any USB port:

- Connect a known good USB device, such as a USB mouse.
- Wait 15 seconds for the analyzer to verify the device connection, and then check the operation of the USB device.
- If the device performs correctly, the USB port is functioning properly.
- If the device does not perform correctly, remove the non-working USB device, wait 15 seconds, and then reconnect the device to the USB port.
- If the device still does not perform correctly, remove the USB device and connect it to the front panel USB.

NOTE If the front panel USB port does not work, refer to "A3 Front Panel Interface Board" on page 4-20.

- If the USB device has been verified to work on the front panel but not on the stand-alone USB port:
- Then the A15 CPU board is faulty. Refer to "Removing and Replacing the A15 CPU Board" on page 7-28.
- If the USB device has been verified to work on the front panel but not on one of the "group-of-four" USB ports:
- Then the rear panel hub is faulty. Refer to "Top Assemblies and Hardware, All Options Including 080" on page 6-16 for replacing the rear panel hub board (part number E8356-60202).

Checking the SERIAL (RS-232), PARALLEL (1284-C), or VGA Port

To verify the proper operation of the SERIAL, PARALLEL, or VGA port:

- Connect a known good serial, parallel, or VGA peripheral device.
- Wait 15 seconds for the analyzer to verify the device connection, and then check the operation of the peripheral device.
- If the peripheral device performs correctly, the port is functioning properly.
- If the peripheral device does not function properly, the A15 CPU board is faulty. Refer to "Removing and Replacing the A15 CPU Board" on page 7-28.

Checking the GPIB Port

The network analyzer uses a National Instruments 488.2 GPIB controller and associated driver software. This software includes a test utility which scans the GPIB bus and returns the status of all the connected peripherals.

To run the test utility software and check the GPIB status:

1. Connect a known good peripheral to the analyzer using a known good GPIB cable.
2. On the System menu, point to Configure, and then click SCPI/GPIB. A SCPI/GPIB dialog box is displayed.
3. In the GPIB block, click System Controller to establish the analyzer as a controller. Wait for the analyzer to configure, and then click OK.
4. On the System menu, click Windows Taskbar to open the Start Menu window.
5. On the Start Menu window, point to Programs, National Instruments NI-488.2, and then click Explore GPIB to open the Measurement \& Automation window.
6. On the left side of the Measurement \& Automation window under folders:
a. Click the plus sign to expand the Measurement \& Automation folder.
b. Click the plus sign to expand the Devices and Interfaces folder.
c. Right click GPIBO (AT-GPIB/TNT) to open a submenu.
7. On the submenu, click Scan for Instruments to run the test.
8. The state of all the peripherals found on the bus is returned.
9. If problems are detected, check the connections of all GPIB cables, and check all the GPIB addresses of the instruments on the bus.

NOTE Address Information

- Each device must have its own unique address.
- The network analyzer's default GPIB address in the controller mode is 21.
- The address set on each device must match the one recognized by the analyzer (and displayed).

Refer to the manual of the peripheral to read or change its address.

Troubleshooting Systems with Controllers

Passing the preceding test indicates that the analyzer's peripheral functions are operating normally. Therefore, if the analyzer has not been operating properly with an external controller, check the following:

- The GPIB interface hardware is incorrectly installed or not operational. (Refer to the embedded help in your analyzer.)
- The programming syntax is incorrect. (Refer to the embedded help in your analyzer.)

LAN Troubleshooting

Problems with the Local Area Network (LAN) can be difficult to solve. Software and protocol problems can make it difficult to determine whether the analyzer's hardware is working properly, or if there is a problem with the LAN or cabling.
The purpose of this section is to determine if the analyzer's hardware is functioning properly. While the turn-on self-test verifies some LAN hardware functionality, it is limited to internal testing only. Incorrect IP addresses will prevent proper operation. Improper subnet masks may allow only one-way communication, while improper gateway addresses may exclude outside LAN access.

Ping Command

The analyzer has the built-in capability of performing a "ping" operation. Ping will request the analyzer to send a few bytes of information to a specific LAN device. That device will then signal the analyzer that it has received the information. The analyzer computes the approximate round trip time of the communication cycle and displays it. For a full test of two-way communications, a ping test should be performed in two directions.

- First: you should ping from the analyzer to the local area network.
- Second: you should ping from the local area network to the analyzer.

NOTE In the second case, any other network device capable of sending a ping command could be used, assuming it is connected to the same network. This could be a computer or even another analyzer.

How to Ping from the Analyzer to the Local Area Network (LAN)

Follow the steps below to verify proper LAN operation (assuming you have a functioning LAN). If no network LAN is available, see "Testing Between Two Analyzers" on page 4-26.

1. Make sure the IP address on the analyzer is set properly and that it is unique. If unsure how to check the IP address, refer to the embedded help in the analyzer.
2. Make sure the subnet mask is 0.0 .0 . 0 . If not, note the current setting (to allow setting it back later) and then set it to 0.0.0.0.
3. Find and note the IP address of another working LAN device on the same network. Make sure this device is turned on, connected, and is functioning properly.
4. To ping the network device:
a. On the System menu, click Windows Taskbar.
b. On the Windows Taskbar menu, point to Programs, Accessories, and then click Command Prompt.
c. The command prompt window is displayed.
d. At the prompt, type ping $\mathrm{xxx} . \mathrm{xxx} . \mathrm{xxx} . \mathrm{xxx}^{1}$ and press Enter on the front panel or keyboard. Refer to Step 5 for the results of a successful ping.
5. The letters x represent the IP address of the other device on the network.
6. The analyzer attempts four cycles of communications with the indicated LAN device.

- It displays the time it took to complete each cycle.
- Each cycle times-out after one second if no communication is established and the message, Request timed out, is displayed.
- It is common for the first of the four cycles to time-out even though subsequent cycles pass.
- See below for an example output of a successful ping.

```
C:>ping 141.121.69.162
Pinging 141.121.69.162 with 32 bytes of data:
Reply from 141.121.69.162: bytes=32 time<10ms TTL=127
Ping statistics for 141.121.69.162:
    Packets: Sent = 4, Received = 4, lost = 0 <0% loss>.
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = 0ms, Average = 0ms
```

6. The above message verifies that one way communication from the analyzer to the network has been established
7. If the subnet mask was changed in step 2 , set it back at this time.

How to Ping from the Local Area Network (LAN) to the Analyzer

Reverse communication should also be verified. Determining this, though, is dependent upon your network setup and software. Generally, you need to issue a ping command using the IP address of the analyzer to be tested. For example, using Windows 95, 98, 2000 and while at a DOS prompt, type in ping xxx.xxx. xxx. xxx^{1}. Then press Enter on the front panel or keyboard. If full communication can be established, then the computer display shows the cycle time for each of four cycle attempts (similar to that in step 5). Other software may behave somewhat differently, but basically the same.

If the analyzer can talk to the network, but the network can not talk to the analyzer, then the computer or device used from the network may have a subnet mask that excludes communication with the IP address chosen for the analyzer. Any subnet mask other than 0.0 .0 .0 will exclude operation from some addresses. Changing the subnet mask of a computer or other device should only be attempted by a qualified network administrator. Failure to communicate due to a subnet mask incompatibility does not indicate any failure of the analyzer.
If the analyzer fails to ping in either direction, and assuming the subnet masks are set properly, then the fault must be isolated to the analyzer or to the network. Contact a qualified network administrator.

[^4]
Testing Between Two Analyzers

The ability of the analyzer's LAN to function can be easily tested by connecting two analyzers together using a "crossover cable" (a short length of cable with an RJ-45 connector on each end).

Some network hubs have the capability to make a crossover connection using two normal, or straight-through, cables. If this capability is not available and a crossover cable is not available, a crossover cable can be made by following the directions in "Constructing a Crossover Cable" on page 4-26.

Set the IP addresses on two analyzers. The addresses can be set to anything, but they must be different. Make sure the subnet mask and gateway addresses are set to 0.0.0.0 and that the LAN is active on both analyzers. Connect the two analyzers together using either a crossover cable or a crossover hub.

Now follow the steps in "How to Ping from the Analyzer to the Local Area Network (LAN)" on page 4-24 to have the first analyzer ping the second analyzer. When done, repeat the procedure having the second analyzer ping the first. If both procedures function properly, the LAN circuitry on both analyzers is verified.
If neither function properly:

- One or both IP addresses could be wrong.
- One or both LAN states could be set to off.
- The crossover cable could be miswired.
- One or both analyzers could be defective.

If possible, eliminate the possibility of a defective analyzer by substitution of a known working unit. Once the analyzer has been proven to be working properly, concentration can be placed on the network itself to determine the cause of the failure.

Constructing a Crossover Cable

A crossover cable can be made from a standard LAN cable by connecting pin 1 from each connector to pin 3 of the other connector, and pin 2 from each connector to pin 6 of the other connector.

1. Strip away a few inches of the outside jacket insulation from the middle of a standard LAN cable that has an RJ-45 connector on each end.

NOTE Pins $1,2,3$, and 6 of the connectors must be located to determine which wires to cut in the following steps. Most, but not all, LAN cables use the color coding listed in Table 4-7. If your cable does not use this color scheme, you will have to determine the locations of the appropriate wires before proceeding with this procedure.

Table 4-7 LAN Pin Definitions and Wire Color Codes

Pin Number	Color	Pin Number	Color
1 (transmit +)	White/orange	5	White/blue
2 (transmit -)	Orange	6 (receive -)	Green
3 (receive +)	White/green	7	White/brown
4	Blue	8	Brown

2. Cut the wires going to pins $1,2,3$, and 6 . Strip away a small amount of insulation from each of the eight cut ends.
a. Connect the wire from pin 1 on one end of the cable to the wire from pin 3 on the other end of the cable.
b. Connect the wire from pin 3 on one end of the cable to the wire from pin 1 on the other end of the cable.
c. Connect the wire from pin 2 on one end of the cable to the wire from pin 6 on the other end of the cable.
d. Connect the wire from pin 6 on one end of the cable to the wire from pin 2 on the other end of the cable.
3. Insulate all exposed wires so that they cannot short together.
4. Label this as a crossover cable so that it cannot be confused with a standard cable.

Figure 4-8 Construction of a Crossover Cable

Measurement System Troubleshooting

This section provides troubleshooting procedures for the measurement portion of the PNA series network analyzer. In this section, the analyzer is used as a tool to help isolate the suspected faulty functional group. Once the faulty functional group is determined, troubleshooting steps are provided to help you isolate the faulty assembly or part.

This section is divided into two major sections for troubleshooting. The first section mainly covers the standard S-parameter measurement troubleshooting (pages 4-29 thru page 4-49). However, some parts are applicable for the frequency offset section. The second section is for troubleshooting the frequency offset section, option 080 (refer to pages 4-51 thru pages 4-55). The "Checking the Frequency Offset Group (Option 080)" on page 4-51 section will also reference portions of the S-parameter troubleshooting section in its troubleshooting process as well as the troubleshooting of the E836xB, option 081 (external reference switch option).

Before you begin, consider: Where do you see a problem?

If you are seeing a problem at [Preset], perform the standard S-parameter test set troubleshooting procedure, starting with: 'Verifying the A, B, R1, and R2 Traces (Standard S-Parameter Mode)'.

If you are only seeing any problems in frequency offset mode, perform the "Serial Bus Test" on page $4-33$ and then perform the "Checking the Frequency Offset Group (Option 080)" on page 4-51.

Verifying the A, B, R1, and R2 Traces (Standard S-Parameter Mode)

NOTE There is no way to view the frequency offset receiver response (Option 080). However, some standard S-parameter receiver trace information is helpful in troubleshooting the frequency offset section of the PNA. It is therefore recommended that you run this test even if you only suspect the frequency offset section of malfunctioning.

The first step is to verify that the $\mathrm{A}, \mathrm{B}, \mathrm{R} 1$, and R 2 traces are present and that they are approximately level:

- On the System menu, point to Service, Utilities, and then click Receiver Display.
- Traces A, B, R1, and R2 are displayed in four separate data windows as shown in Figure 4-9. Identifying discrepancies of the traces in these windows can help you to isolate the faulty assembly.

Figure 4-9 Typical Four Channel Display

- If all traces are present and are similar to the traces in Figure 4-9, then there are no major problems with the analyzer's measurement system. There may, however, be a minor failure in the analyzer.
To test further:
- Go to Chapter 3 , "Tests and Adjustments," and perform all the tests in that section.
- If a problem still exists, contact Agilent. Refer to "Contacting Agilent" on page 2-10.
- If any of the traces are not present, are noisy or distorted, or are at an incorrect level, then there is a problem with the analyzer's measurement system. Proceed to "Where to Begin Troubleshooting".

Where to Begin Troubleshooting

For the purposes of troubleshooting, the analyzer block diagram is divided into the following functional groups:

- the source group

- A8 fractional-N synthesizer
- A10 frequency reference
- A11 phase lock
- A12 source 20
- A16 test set motherboard
- A17 LOMA 10
- A18 MA 20
- A19 splitter
- A20 LODA
- A21 SOMA 50 (E8363B and E8364B only)
- the signal separation group
- A22 switch splitter
- A23 and A24 detectors (E8363B and E8364B only)
- 30-dB fixed attenuators (E8362B only)
- A25 and A26 test port couplers
- A36 and A37 60-dB step attenuators (Option UNL only)
- A38 and A38 bias tees (Option UNL only)
- Port 1, Port 2, A, B, R1, and R2 ports
- the receiver group
- A13 frequency offset receiver (Option 080 only) ${ }^{1}$
- A27, A28, A29, and A30 first converters
- A31 receiver A
- A32 receiver R1
- A33 receiver R2
- A34 receiver B
- A35 receiver motherboard
- A6 SPAM
- the frequency offset group (Option 080 only)
- A9 fractional-N synthesizer (Option 080 only)
- A10 frequency reference
- A12 source 20
- A13 frequency offset receiver (Option 080 only)
- A45 and A46 switches (Option 081 only) ${ }^{1}$

Use the list on the following pages to help you determine in which analyzer functional group to begin troubleshooting.

This is by no means an exhaustive list of possible symptoms nor possible failures. It is recommended that you view the system block diagram, located at the end of this chapter, as you review the entries in this list and while performing any of the troubleshooting procedures listed.
Good judgement and established logical troubleshooting techniques must be used to complement the procedures contained in this section.

Refer to Table 4-8 on page 4-43 for a list of the frequencies associated with each of the network analyzer's 26 bands.

All Traces

- If all traces are missing in all bands, the problem is most likely in the source group. However, a missing or disabled DSP driver may exhibit the same or similar symptoms. To verify that this DSP driver is present and enabled:

1. Click My Computer, Properties, Hardware tab, Device Manager. Expand Network Adapters. The following entry should be listed: Agilent Technologies DSP Driver \#2 and should be enabled.
2. If the icon to the left of the name is a yellow box containing an exclamation mark (!), use Windows Explorer to verify the presence of the following file:
C: \WINNT \system32\drivers \spampnp. sys.
3. If you have verified that the DSP driver is present and enabled, but all traces are still missing in all bands, go to "Checking the Source Group" on page 4-33.

- If the trace faults are band-related, the problem is in the source group. Using Table $4-8$ on page 4-43, note the frequency bands in which problems are seen. Go to "Checking the Source Group" on page 4-33 and check the A8 fractional-N synthesizer board outputs and the A10 frequency reference board outputs.

[^5]
R1 and A Traces

If both traces are affected, the problem is in the R1 phase lock loop.

- If both traces are missing in all bands, the problem is in the A 16 test set motherboard, the A28 R1 first converter, the A32 R1 receiver, or the A22 switch splitter. To determine which is at fault:

1. Bypass the A22 switch splitter using a flexible RF cable connected between the input cable W2 and the R1 output cable W4.
2. If the R1 trace is now present, replace the A22 switch splitter. If the R1 trace is still missing, reconnect the cables to the A22 switch splitter.
3. Swap the A32 R1 receiver with the A33 R2 receiver. (Each of the four receivers is identical.)
4. If the missing trace is now R2 (still associated with the same A32 R1 receiver), replace the A32 R1 receiver. If the R1 trace is still missing, replace the A16 test set motherboard.

R2 and B Traces

If both traces are affected, the problem is in the R2 phase lock loop.

- If both traces are missing in all bands, the problem is in the A16 test set motherboard, the A29 R2 first converter, the A33 R2 receiver, or the A22 switch splitter. To determine which is at fault:

1. Bypass the A22 switch splitter using a flexible RF cable connected between the input cable W2 and the R2 output cable W5.
2. If the R2 trace is now present, replace the A22 switch splitter. If the R2 trace is still missing, reconnect the cables to the A22 switch splitter.
3. Swap the A33 R2 receiver with the A32 R1 receiver. (Each of the four receivers is identical.)
4. If the missing trace is now R 1 (still associated with the same A33 R2 receiver), replace the A33 channel R2 receiver. If the R2 trace is still missing, replace the A16 test set motherboard.

R1 Trace Only

A problem that affects only the R1 trace is isolated to the A28 R1 first converter, the A32 R1 receiver, or the A6 SPAM board. Go to "Checking the Receiver Group" on page 4-49.

R2 Trace Only

A problem that affects only the R2 trace is isolated to the A29 R2 first converter, the A33 R2 receiver, or the A6 SPAM board. Go to "Checking the Receiver Group" on page 4-49.

A Trace Only

If the trace is missing in all bands, go to "Checking the Signal Separation Group" on page 4-45.

B Trace Only

If the trace is missing in all bands, go to "Checking the Signal Separation Group" on page 4-45.

Checking the Source Group

Serial Bus Test

Before performing tests on specific assemblies in the source group, it is recommended that you perform the serial bus test. This may help to isolate the failure to a specific assembly.

Through the front panel, the serial bus test allows you to check signal and voltage levels at 32 points (nodes) distributed across four of the printed circuit board assemblies in the analyzer. With this test you can isolate problem board assemblies in the analyzer. The board assemblies tested and their associated node numbers are as follows:

NOTE This test is written for a PNA series network analyzer as it was originally shipped from the factory. Due to changes in board production, this test may not show accurate pass/fail results if the A8, A10, A11, A12, or A16 board have been replaced with newer board assemblies.

Board Assembly	Node Numbers
A12 source 20	111 to 118
A10 frequency reference	211 to 218
A11 phase lock	311 to 318
A8 fractional-N synthesizer	411 to 418
A16 test set motherboard, MA 20	511 to 518
A16 test set motherboard, SOMA 50	611 to 618
A16 test set motherboard, AUX 1	711 to 718
A16 test set motherboard, AUX 2	811 to 818
A9 fractional-N synthesizer (Option 080 only)	911 to 918

1. Board assembly A9 troubleshooting is discussed further in the "Checking the Frequency Offset Group (Option 080)" on page 4-51.

Descriptions of each board assembly and node is included in this section. Location of the nodes is indicated with a symbol on the block diagrams located at the end of this chapter.

Performing the Serial Bus Test

First, this test sequentially checks all 48 nodes at 45 MHz . Next, the test checks all nodes that change values with frequency, at 49 different frequency points. For each node, measured values are copied to an ASCII text file in the service directory on the hard disk drive. Any measured values that exceed the tolerances are highlighted in the application and the data file.

To run the serial bus test:

- On the System menu, point to Service, and then click Serial Bus Test.
- The dialog box in Figure 4-10 on page 4-34 is displayed. Click Begin to start the test.

Figure 4-10 Serial Bus Test Dialog Box

Node Descriptions, A12 Source 20

Node 111 ALC integrator Node 111 senses the output of the ALC integrator. The output of the ALC integrator is the combined voltage output of all compensation circuits in the ALC. The voltage level varies with frequency and output power.

Node 112 Level Output Node 112 senses the output of the detector log amp in the ALC.

Node 113 Detector Level Node 113 senses the power level of the internal detector signal from the output of the A12 source 20.

Node $114-\mathbf{1 V} / \mathbf{G H z}$ Compensation Node 114 senses the inverse of the $-1 \mathrm{~V} / \mathrm{GHz}$ signal that comes from the A11 phase lock board. The $-1 \mathrm{~V} / \mathrm{GHz}$ compensates for first-order power changes of the YIG oscillator with respect to frequency.
Node 115 Temperature Compensation Node 115 senses the output of thermistor circuity that compensates for changes in operating temperature of the YIG oscillator.

Node 116 Power DAC Node 116 senses the output voltage of the power DAC. This output is summed with other compensation signals to control the source output level. The power DAC has the most influence of the compensation signals.

Node 117 Power Amplifier Compensation Node 117 senses the voltage compensation for the source output power amplifiers. This compensation is set for each source band.

Node 118 Permanent Magnet YIG Oscillator (PMYO) DAC Node 118 senses the output voltage of the DAC that sets the frequency of the 3.8 GHz PMYO.

Node Descriptions, A10 Frequency Reference Board

Node $211 \mathbf{1 0 0} \mathbf{M H z}$ Tune Node 211 senses the tune voltage that phase locks the 100 MHz VCO. The tune voltage is set by referencing the 100 MHz VCO to the internal 10 MHz OCXO or to the 10 MHz EXT REF.

Node 212100 MHz Level Node 212 senses the average voltage output level of the 100 MHz VCO phase locked reference signal.

Node $213 \quad 99.50 \mathrm{MHz}$ Tune Node 213 senses the tune voltage that phase locks the 99.50 MHz VCO. The tune voltage is set by referencing the 100 MHz VCO.

Node 214 99.50 MHz Level Node 214 senses the average voltage output level of the 99.50 MHz reference VCO.

Node 215 External Reference Detect Node 215 senses a TTL signal which is used to set the reference frequency switch. The node registers a low TTL voltage when the internal 10 MHz OCXO signal is used or a high TTL voltage when the external 10 MHz EXT REF is used.

Node 216 Phase Lock Average Voltage Node 216 senses the average voltage of the 8.333 MHz phase lock reference signal that is routed to the A11 phase lock board. This voltage is constant through all bands.

Node 217500 kHz Level Node 217 senses the average voltage of the 500 kHz phase lock reference signal.
Node $218 \quad 33.1667$ MHz 2nd LO Average Voltage Node 218 senses the average voltage of the 33.1667 MHz 2nd LO signal that is routed to the A35 receiver motherboard. This voltage is constant through all bands.

Node Descriptions, A11 Phase Lock Board

Node 311 NC Node 311 is not used in this product.
Node 312100 kHz Phase Detector Node 312 senses the average voltage of the phase comparator at the output of a 700 kHz low-pass filter.
Node 313 NC Node 313 is not used in this product.
Node 314100 kHz Phase Detector Integrator Node 314 senses the tune voltage that phase locks the source. The integrator that supplies this signal receives its input from the 700 kHz phase detector (Node 312).
Node 315 1V/GHz YTO Drive Voltage Node 315 senses the YIG-tuned oscillator drive voltage which sweeps at $1 \mathrm{~V} / \mathrm{GHz}$.
Node 316 YTO Drive Current Node 316 senses the YIG-tuned oscillator drive current.

Node 317 YTO Tune Compensation Node 317 senses the voltage output of the YTO tune compensation summation node.

Node 318 Ground Node 318 is connected to digital ground to serve as a measurement reference.

Node Descriptions, A8 Fractional-N Synthesizer Board

Node $411+5$ Vdc Supply Voltage Node 411 senses the 5 Vdc supply voltage which serves as a measurement reference.

Node 412 1.5 to 3.0 GHz VCO Compensation Node 412 senses the average voltage output level of the 1.5 to 3.0 GHz VCO.

Node 413 1.5 to 3.0 GHz VCO Tune Voltage Node 413 senses the average voltage input level of the 1.5 to 3.0 GHz VCO.

Node 414 Heterodyne Band ALC Level Node 414 senses the ALC output voltage which is used to level the heterodyne circuit output for band 1.

Node 415 2.250 GHz VCO Tune Voltage Node 415 senses the average voltage input level of the 2.250 GHz VCO.

Node 416 Fundamental and Divide-by-2 Band ALC Level Node 416 senses the ALC output voltage which is used to level the heterodyne circuit output for bands 2-25.

Node 417 2.250 GHz VCO Compensation Node 417 senses the average voltage output level of the 2.250 GHz VCO.
Node 418 ALC Level Adjust Node 418 senses the voltage which is used to set the offset on the heterodyne band ALC.

Node Descriptions, A16 Test Set Motherboard, MA 20
Node 511 ALC Output Node 511 senses the output of the ALC integrator. The output of the integrator is the combined voltage output of the compensation circuits in the ALC.

Node 512 Power DAC Node 512 senses the output voltage of the power DAC. This output is summed with other compensation signals to control the SOMA 50 output level. The power DAC has the most influence of the compensation signals.

Node 513 ALC Output Node 513 senses the output of the ALC summing junction. The output of the ALC summing junction is the combined voltage output of all compensation circuits in the ALC. The voltage level varies with frequency and output power.
Node 514 1V/GHz Compensation Node 514 senses the output voltage of the $1 \mathrm{~V} / \mathrm{GHz}$ compensation amplifier for the LO ALC.
Node 515 Slope Compensation Node 515 senses the slope compensation.
Node 516 - $\mathbf{1 5}$ V Reference Node 516 senses the -15 Vdc supply voltage which serves as a measurement reference.

Node $517 \quad+9$ V Reference Node 517 senses the +9 Vdc supply voltage which serves as a measurement reference.

Node $518+15$ V Reference Node 518 senses the +15 Vdc supply voltage which serves as a measurement reference.

Node Descriptions, A16 Test Set Motherboard, SOMA 50

Node 611 Detector Level Node 611 senses the power level of the internal detector signal from the A22 switch splitter or the power level from the external detector from the rear panel.

Node 612 Level Output Node 612 senses the output of the detector log amp in the ALC.

Node 613 ALC Output Node 613 senses the output of the ALC integrator. The output of the ALC integrator is the combined voltage output of all compensation circuits in the ALC. The voltage level varies with frequency and output power.

Node 614 1V/GHz Compensation Node 614 senses the inverse of the $-1 \mathrm{~V} / \mathrm{GHz}$ signal that comes from the A11 phase lock board. The $-1 \mathrm{~V} / \mathrm{GHz}$ compensates for first-order power changes of the YIG oscillator with respect to frequency.
Node 615 Temperature Compensation Node 615 senses the input voltage applied to the temperature compensation amplifier for the source ALC.
Node 616 Slope Compensation Node 616 senses the slope compensation.
Node 617 Log Amp Collector Voltage Node 617 senses the collector voltage of the source ALC log amp.
Node 618 Power DAC Node 618 senses the output voltage of the power DAC. This output is summed with other compensation signals to control the source output level. The power DAC has the most influence of the compensation signals.

Node Descriptions, A16 Test Set Motherboard, AUX 1

Node 711 Log Amp Breakpoint 1 Voltage Node 711 senses the breakpoint voltage for stage 1 of the source ALC log amp.

Node 712 Log Amp Breakpoint 2 Voltage Node 712 senses the breakpoint voltage for stage 2 of the source ALC log amp.

Node 713 1V/GHz Compensation Node 713 senses the input voltage applied to the $1 \mathrm{~V} / \mathrm{GHz}$ compensation amplifier for the LO ALC.
Node 714 Log Amp Offset Voltage Node 714 senses the offset voltage for the source ALC log amp.
Node $715+10$ V Reference Node 715 senses the +10 V supply voltage which serves as a measurement reference.

Node 716 Log Amp Emitter Voltage Node 716 senses the emitter voltage of the source ALC log amp.
Node 717 Temperature Compensation Node 717 senses the output voltage of the temperature compensation amplifier for the source ALC.
Node 718 SOMA 50 Prelevel DAC Node 718 senses the prelevel DAC voltage applied to the output of the source ALC circuitry upon analyzer startup to preset the output level of the SOMA 50.

Node Descriptions, A16 Test Set Motherboard, AUX 2

Node 811 - $\mathbf{1 0}$ V Reference Node 811 senses the -10 V supply voltage which serves as a measurement reference.

Node $812+1.78$ V Bias Reference Node 812 senses the +1.78 V bias supply voltage which serves as a measurement reference.

Node 813 Phase Lock IF Detector Node 813 senses.
Node $814+10$ V Reference Node 814 senses the +10 V supply voltage which serves as a measurement reference.

Node 815 -1.25 V Bias Reference Node 815 senses the -1.25 V bias supply voltage which serves as a measurement reference.

Node $816+5$ V Reference Node 816 senses the +5 V supply voltage which serves as a measurement reference.

Node 817 Logger Drive Voltage Output Node 817 senses the drive voltage applied to the source ALC log amp.
Node 818 Detector Voltage Output Node 818 senses.
Node Descriptions, A9 Fractional-N Synthesizer Board (Option 080 Only)
Node $911+\mathbf{5}$ Vdc Supply Voltage Node 911 senses the 5 Vdc supply voltage which serves as a measurement reference.

Node 912 1.5 to 3.0 GHz VCO Compensation Node 912 senses the average voltage output level of the 1.5 to 3.0 GHz VCO .

Node 913 1.5 to 3.0 GHz VCO Tune Voltage Node 913 senses the average voltage input level of the 1.5 to 3.0 GHz VCO.

Node 914 Heterodyne Band ALC Level Node 914 senses the ALC output voltage which is used to level the heterodyne circuit output for band 1.

Node 915 2.250 GHz VCO Tune Voltage Node 915 senses the average voltage input level of the 2.250 GHz VCO.

Node 916 Fundamental and Divide-by-2 Band ALC Level Node 916 senses the ALC output voltage which is used to level the heterodyne circuit output for bands 2-25.

Node 917 2.250 GHz VCO Compensation Node 917 senses the average voltage output level of the 2.250 GHz VCO.

Node 918 ALC Level Adjust Node 918 senses the voltage which is used to set the offset on the heterodyne band ALC.

Source Group Tests

NOTE A defective A22 switch splitter can exhibit the same symptom as a faulty source. Therefore, if it is determined that the source is functioning properly, you are directed to "Checking the Signal Separation Group" on page 4-45.

Equipment Used for These Tests

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	All	8565 E	None
Power meter	All	E4418B/19B	E4418A/19A
Power sensor, 3.5 mm	E8362B	8485 A	None
RF cable, 3.5 mm (f) to $3.5 \mathrm{~mm}(\mathrm{f})$	E8362B	85131 C	Any
Power sensor, 2.4 mm	E8363B, E8364B	8487 A	None
RF cable, $2.4 \mathrm{~mm}(\mathrm{f})$ to $2.4 \mathrm{~mm}(\mathrm{f})$	E8363B, E8364B	85133 C	Any

Getting Ready to Test

Before checking the assemblies, you must open the analyzer.
CAUTION Use an antistatic work surface and wrist strap to reduce the chance of electrostatic discharge for all of the procedures in this chapter.

1. Turn off the analyzer power.
2. Unplug the power to the analyzer and disconnect all rear panel connections.
3. Remove the covers from the analyzer. Refer to "Removing the Covers" on page 7-6.
4. With the covers off, plug in the analyzer and turn on the power.

Single vs. Broadband Failure

There are two main types of failures that are related to the source group. The failures are classified as:

- broadband
- single band

Single band failures are indicated by all four channel traces having partial dropouts across the frequency range or intermittent phase lock problems. Troubleshooting information is provided under "If the traces faults are band-related", under "All Traces" on page 4-31.

Broadband failures are indicated by all four channel traces being in the noise floor. Most often this is due to problems in the phase lock signal path and will be characterized by a "PHASE LOCK LOST" error message on the display.
A phase lock problem is due to either:

- bad frequency accuracy (caused by the A8, A10, or A11 board), or
- bad power level (caused by the A12 source 20)

To isolate a broadband failure to either the A8 or A10 board, refer to the data obtained from the "Serial Bus Test" on page 4-33:

- If the data obtained for the A10 frequency reference board is out of tolerance, replace the A10 board.
- If the data obtained for the A10 frequency reference board is correct but the data for the A8 fractional-N synthesizer board is out of tolerance, replace the A8 board.
To isolate a broadband failure to either the A11, A12 or A21 assembly:
- Connect a power meter and power sensor to Port 1 of the analyzer.
- On the analyzer, press Preset, set the Center Frequency to $\mathbf{2} \mathbf{G H z}$, and the Frequency Span to $\mathbf{0} \mathbf{~ H z}$.

In the unlocked state, the analyzer will "search" for the reference signal. The output power, as indicated on the power meter, will vary $\pm 5 \mathrm{~dB}$.

- If the output power is approximately $-12 \mathrm{dBm} \pm 5 \mathrm{~dB}$ for E 836 xB with no options or $-17 \mathrm{dBm} \pm 5 \mathrm{~dB}$ for E 836 xB with options, the problem is frequency related, replace the A11 phase lock board.
- If the output power is at or below the minimum power level for the power sensor, the problem is power related and caused by either the A12 source 20 or the A21 SOMA 50.

1. Disconnect W1 from A12.
2. Connect a cable to A12 and measure the output power.
3. A power level of $-17 \mathrm{dBm} \pm 5 \mathrm{~dB}$ indicates the A12 board is functioning normally.
4. Replace A21.

Checking the $\mathbf{A 1 0} 5 \mathrm{MHz}$ Reference Output

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate flexible cable W31, at the A10 frequency reference board.
2. Disconnect W31 from A10J10.
3. Connect the spectrum analyzer to A10J10.
4. The spectrum analyzer should measure a signal at 5 MHz .
5. If no 5 MHz signal is present, replace the A10 frequency reference board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the 5 MHz signal is present, reconnect cable W31, and then continue with "Checking the A10 Phase Lock Reference Output" on page 4-40.

Checking the A10 Phase Lock Reference Output

1. Refer to the block diagram at the end of this chapter and "Top Cables, All Options Except 080" on page 6-14. Locate flexible cable W32 at the A10 frequency reference board.
2. Disconnect W32 from A10J5.
3. Connect the spectrum analyzer to A10J5.
4. Verify the presence of the 8.333 MHz phase lock reference output signal.
5. If the signal is not present, replace the A10 frequency reference board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the signal is present, reconnect cable W32, and then continue with "Checking the 2nd LO at the A10 Frequency Reference" on page 4-41.

Checking the 2nd LO at the A10 Frequency Reference

Perform this procedure if a problem is in one of the receiver channels and appears to be a band related problem.

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate the flexible cable W29 at the A10 frequency reference board.
2. Disconnect the flexible cable W29 at A10J4.
3. Connect the spectrum analyzer to A10J4.
4. Verify the presence of the 33.1667 MHz signal at A10J4.
5. If the signal is not present, replace the A10 frequency reference board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the signal is present, reconnect cable W29, and then go to "Checking the A31 through A34 Receiver Outputs" on page 4-50.

Checking the A8 Fractional-N Synthesizer Band 1 Output

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate the flexible cable W20, at the A8 fractional-N synthesizer board.
2. Disconnect W20 from A8J101.
3. Connect the spectrum analyzer to A8J101.
4. Set the network analyzer for a 500 MHz CW frequency and observe the spectrum analyzer measurement.

- The spectrum analyzer should measure a signal at 508.33 MHz .

5. If the 508.33 MHz signal is not present and the 5 MHz reference signal is present from "Checking the A10 5 MHz Reference Output," replace the A8 fractional-N synthesizer board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the signal is present, reconnect cable W20, and then continue with "Checking the A8 Fractional-N Synthesizer Band 2 Output" on page 4-41.

Checking the A8 Fractional-N Synthesizer Band 2 Output

Perform this procedure if you observe a problem in band 2 in all receivers.

1. Refer to the block diagram at the back of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate semirigid cable W19, at the A8 fractional-N synthesizer board.

CAUTION Be careful not to damage the center pins of the semirigid cable. Some flexing of the cables is necessary to measure the output.
2. Using a $5 / 16$-inch torque wrench, disconnect W19 at A8J106.
3. Connect the spectrum analyzer to A8J106.
4. Set the network analyzer to a CW frequency of 1 GHz .

- The spectrum analyzer should measure a signal at 1.008 GHz .

5. If this signal is not present, replace the A8 fractional-N synthesizer board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the signal is present, leave the spectrum analyzer connected to A8J106 and continue with "Checking the A8 Fractional-N Synthesizer Bands 3 through 25 Output" on page 4-42.

Checking the A8 Fractional-N Synthesizer Bands 3 through 25 Output

Perform this procedure if you observe a problem in bands 3 through 25 in all receivers.

1. Set the network analyzer to a CW frequency of 2 GHz .

- The spectrum analyzer should measure a signal at 2.008 GHz .

2. If the signal is not present, replace the A8 fractional-N synthesizer board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
3. If the signal is present, reconnect cable W19, and then continue with "Checking the A17 LOMA 10 Output" on page 4-42.

Checking the A17 LOMA 10 Output

Perform this procedure if you observe a problem in any band and all signals from the A8 fractional-N synthesizer are present.

1. Refer to the block diagram at the back of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate semirigid cable W18, at the A17 LOMA 10.

CAUTION Be careful not to damage the center pins of the semirigid cable. Some flexing of the cables is necessary to measure the output.
2. Using a $5 / 16$-inch torque wrench, disconnect W18 at the A17 LOMA 10.
3. Connect the spectrum analyzer to the open A17 connector.
4. For each frequency band in which problems were seen: Set the network analyzer to each of the frequencies indicated in the "Network Analyzer Source Frequency Setting (GHz)" column in Table 4-8 on page 4-43.
5. Set the spectrum analyzer to measure each of the corresponding frequencies in the column labeled: "Expected A17 Output Frequency (GHz)" in Table 4-8 on page 4-43.
6. If the signals are $<-30 \mathrm{dBm}$ or not present, replace the A17 LOMA 10. Refer to "Removing and Replacing the A17 LOMA 10" on page 7-32.
7. If the signals are present, reconnect cable W18, and then continue with "Checking the A18 MA 20 Output" on page 4-44.

Table 4-8 LO Path Frequencies

Model	Band	Network Analyzer Frequency Band of Problem (GHz)	Network Analyzer Source Frequency Setting (GHz)	Expected A17 Output Frequency (GHz)	Expected A18 Output Frequency (GHz)
E8362B, E8363B, E8364B	0	0.010 to 0.045	. 025	0.025	0.025
	1	0.045 to 0.748	0.500	0.500	0.500
	2	0.748 to 1.500	1.00	1.00	1.00
	3	1.50 to 3.00	2.20	2.20	2.20
	4	3.00 to 3.80	3.40	3.40	3.40
	5	3.80 to 4.50	4.20	4.20	4.20
	6	4.50 to 4.80	4.60	4.60	4.60
	7	4.80 to 6.00	5.40	5.40	5.40
	8	6.00 to 6.40	6.20	6.20	6.20
	9	6.40 to 7.60	7.00	7.00	7.00
	10	7.60 to 10.00	8.80	8.80	8.80
	11	10.00 to 12.00	11.00	5.50	11.00
	12	12.00 to 12.80	12.40	6.20	12.40
	13	12.80 to 15.20	14.00	7.00	14.00
	14	15.20 to 16.00	15.60	7.80	15.60
	15	16.00 to 20.00	18.00	9.00	18.00
	16	20.00 to 22.80	21.40	7.14	7.14
	17	22.80 to 25.60	24.20	8.07	8.07
	18	25.60 to 30.00	27.80	9.27	9.27
	19	30.00 to 32.00	31.00	5.17	10.34
	20	32.00 to 36.00	34.00	5.67	11.34
	21	36.00 to 38.40	37.20	6.20	12.40
	22	38.40 to 40.00	39.20	6.54	13.08
	23	40.00 to 45.60	42.80	7.14	14.28
	24	45.60 to 48.00	46.80	7.80	15.60
	25	48.00 to 50.00	49.00	8.17	16.34

Checking the A18 MA 20 Output

Perform this procedure if you observe a problem in any band and all signals from the A8 fractional-N synthesizer are present.

1. Refer to the block diagram at the back of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate semirigid cable W17, at the A18 MA 20.

CAUTION Be careful not to damage the center pins of the semirigid cable. Some flexing of the cables is necessary to measure the output.
2. Using a 5/16-inch torque wrench, disconnect W17 at the A18 MA20.
3. Connect the spectrum analyzer to the open A18 connector.
4. For each frequency band in which problems were seen: Set the network analyzer to each of the frequencies indicated in the "Network Analyzer Source Frequency Setting (GHz)" column in Table 4-8 on page 4-43.
5. Set the spectrum analyzer to measure each of the corresponding frequencies in the column labeled: "Expected A18 Output Frequency (GHz)" in Table 4-8 on page 4-43.
6. If the signals are $<-30 \mathrm{dBm}$ or not present, replace the A18 MA 20. Refer to "Removing and Replacing the A18 MA 20" on page 7-34.
7. If the signals are present, reconnect cable W17, and then continue with "Checking the A20 LODA Output" on page 4-44.

Checking the A20 LODA Output

Perform this test if you observe a problem in all bands on a single channel.

1. Refer to the block diagram at the back of this chapter and to "Top Cables, All Options Except 080" on page 6-14. Locate cables W11, W12, W13, and W14, at the A20 LODA.
2. Using a $5 / 16$-inch torque wrench, disconnect the cable associated with the faulty channel (W11, W12, W13, or W14) and connect the spectrum analyzer to the A20 LODA connector.
3. Set the network analyzer to any one of the frequencies listed in Table 4-8 on page 4-43.
4. Set the spectrum analyzer to measure the corresponding A18 output frequency listed in Table 4-8.
5. If the signal is not present, replace the A20 LODA. Refer to "Removing and Replacing the A20 LODA" on page 7-38.
6. If the signal is present, reconnect the cable, and then go to "Checking the Receiver Group" on page 4-49.

Checking the Signal Separation Group

Before checking the signal separation group, perform the following procedures:

- "Getting Ready to Test" on page 4-39

Checking the Output Power of the A and B Signals

Using a power meter, you can measure the outputs of the A and B signals from the front panel. The measurement results will help you isolate a faulty assembly. The outputs of the R1 and R2 channels cannot be measured because it would necessitate breaking the phase lock loop, causing all of the signals to be lost.

Equipment Used for These Tests

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Power meter		E4418B/E441B	E4418A/E4419A
Power sensor	E8362B	E8485A	None
Adapter, $3.5 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{f})$	E8362B	83059 B	$85052-60012$
Power sensor, 2.4 mm	E8363B, E8364B	8487 A	None
Adapter, 2.4 mm (f) to $2.4 \mathrm{~mm}(\mathrm{f})$	E8363B, E8364B	11900 B	$85056-60007$

Equipment Setup

1. Before starting these checks, zero and calibrate the power meter. (See the power meter user's guide for instructions on setting the calibration factor.)
2. If the Receiver Display (Figure 4-9) is not on the analyzer screen, perform the following: On the System menu, point to Service, Utilities, and then click Receiver Display.
3. Set the sweep speed for a 10 second sweep: On the Sweep menu, click Sweep Time and set the time to 10.000 seconds in the Sweep Time box.

Checking Port 1 Power (A Signal)

The object of this check is to verify the power of the A signal across the entire frequency range. Perform this test if there is an observed problem only with the channel A trace. The ten second sweep is slow enough to allow you to observe the output power on the power meter as the sweep occurs.

1. Connect the power sensor to Port 1.
2. Observe the power reading on the power meter as the sweep occurs on the analyzer.
3. The measured output power on the power meter should be within $-12 \mathrm{dBm} \pm 4 \mathrm{~dB}$ for E836xB with no options or $-17 \mathrm{dBm} \pm 4 \mathrm{~dB}$ for E 836 xB with options, over the entire frequency range.

- If the measured power is correct, go to "Checking the Receiver Group" on page 4-49.
- If the measured power is not correct, go to "Checking the Signal through the Signal Separation Path" on page 4-46.

Checking Port 2 Power (B Signal)

The object of this check is to verify the power of the B signal across the entire frequency range. Perform this test if there is an observed problem only with the channel B trace. The ten second sweep is slow enough to allow you to observe the output power on the power meter as the sweep occurs.

1. Connect the power sensor to Port 2.
2. Observe the power reading on the power meter as the sweep occurs on the analyzer.
3. The measured output power on the power meter should be within $-12 \mathrm{dBm} \pm 4 \mathrm{~dB}$ for E836xB with no options or $-17 \mathrm{dBm} \pm 4 \mathrm{~dB}$ for E836xB with options, over the entire frequency range.

Checking the Signal through the Signal Separation Path

For all of the following checks, refer to the block diagrams at the end of this chapter and to:

- "Bottom Assemblies, No Options" on page 6-20 and
- "Parts Included with Option UNL" on page 6-30 thru "Parts Included with Option UNL, 014, 016, 080, 081 (Continued)" on page 6-49 (as required)
Port 1 trace loss in the signal separation group is due to one or more of the following assemblies being defective:
- A22 switch splitter
- A25 test port 1 coupler
- A36 60-dB step attenuator (Option UNL)
- A38 bias tee (Option UNL)

Port 2 trace loss in the signal separation group is due to one or more of the following assemblies being defective:

- A22 switch splitter
- A26 test port 2 coupler
- A37 60-dB step attenuator (Option UNL)
- A38 bias tee (Option UNL)

Equipment Used for These Tests

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	All	8565 E	$856 \mathrm{xE}^{1}$

1. Must be capable of measuring a signal at 1 GHz .

To determine which assembly is defective, check the signal at each available measurement point in the signal path from the A22 switch splitter to the test port coupler.
For Port 1 measurements, set the network analyzer for an S_{11} measurement with a CW frequency of 1 GHz .

For Port 2 measurements, set the network analyzer for an S_{22} measurement with a CW frequency of 1 GHz .

Perform the following checks in the order presented.

Checking the A22 Switch Splitter and A25 and A26 Test Port Couplers

1. Locate the following semirigid cable at the A22 switch splitter:

Standard W5 for Port 1 or W6 for Port 2

Option UNL .W51 for Port 1 or W52 for Port 2
Option 014. W61 for Port 1 or W62 for Port 2
Option UNL/014 W51 for Port 1 or W52 for Port 2
2. Using a $5 / 16$-inch torque wrench, disconnect the semirigid cable at the A22 switch splitter.
3. Connect the spectrum analyzer to the connector. Set the spectrum analyzer to measure a signal at 1 GHz .
4. If the 1 GHz signal is not present, replace the A22 switch splitter. Refer to "Removing and Replacing the A22 Switch Splitter" on page 7-42.
5. If the 1 GHz signal is present:

Standard replace the appropriate test port coupler. Refer to "Removing and Replacing the A25 and A26 Test Port Couplers" on page 7-48.

Option 014. replace the appropriate test port coupler. Refer to "Removing and Replacing the A25 and A26 Test Port Couplers" on page 7-48.

Option UNL reconnect the semirigid cable and go to "Checking the A36 and A37 60-dB Step Attenuators (Option UNL)" on page 4-47.

Option UNL/014 . . . reconnect the semirigid cable and go to "Checking the A36 and A37 60-dB Step Attenuators (Option UNL)" on page 4-47.

Checking the A36 and A37 60-dB Step Attenuators (Option UNL)

1. Locate the following semirigid cable at the appropriate step attenuator:

Option UNL
.W53 for Port 1 or W54 for Port 2
Option UNL/014
.W81 for Port 1 or W82 for Port 2
2. Using a $5 / 16$-inch torque wrench, disconnect the semirigid cable at the step attenuator.
3. Connect the spectrum analyzer to the step attenuator connector. Set the spectrum analyzer to measure a signal at 1 GHz .
4. If the 1 GHz signal is not present, replace the appropriate $60-\mathrm{dB}$ step attenuator. Refer to "Removing and Replacing the A36 and A37 60-dB Source Step Attenuators (Option UNL)" on page 7-56.
5. If the 1 GHz signal is present, reconnect the semirigid cable and go to "Checking the A38 and A39 Bias Tees (Option UNL)" on page 4-48.

Checking the A38 and A39 Bias Tees (Option UNL)

1. Locate the following semirigid cable at the appropriate bias tee:

Options UNL and UNL/014 W55 for Port 1 or W56 for Port 2
2. Using a $5 / 16$-inch torque wrench, disconnect the semirigid cable at the bias tee.
3. Connect the spectrum analyzer to the step attenuator connector. Set the spectrum analyzer to measure a signal at 1 GHz .
4. If the 1 GHz signal is not present, replace the appropriate bias tee. Refer to "Removing and Replacing the A38 and A39 Bias Tees (Option UNL)" on page 7-58.
5. If the 1 GHz signal is present, replace the appropriate test port coupler. Refer to "Removing and Replacing the A25 and A26 Test Port Couplers" on page 7-48.

Checking the Receiver Group

Equipment Used for These Tests

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	All	8565 E	$856 \mathrm{xE}^{1}$

1. Must be capable of measuring signals at 8.333 MHz and 41.667 MHz .

Getting Ready to Test

Before checking the assemblies, you must open the analyzer.
CAUTION Use an antistatic work surface and wrist strap to reduce the chance of electrostatic discharge (refer to "Protect Against Electrostatic Discharge (ESD)" on page 4-3).

1. Turn off the analyzer power.
2. Unplug the power to the analyzer and disconnect all rear panel connections.
3. Remove the covers from the analyzer. Refer to "Removing the Covers" on page 7-6.
4. With the covers off, plug in the analyzer and turn on the power.

Checking the A27 through A30 First Converter Outputs

Perform this procedure if you observe a problem in all bands on a single channel.

1. Refer to the block diagram at the end of this chapter and to "Bottom RF Cables, No Options" on page 6-22. Locate the cables W21, W22, W23, and W24 at the first converters, A27, A28, A29, and A30, respectively.
2. Using a $5 / 16$-inch torque wrench, disconnect the semirigid cable associated with the faulty channel, from the first converter.
3. Connect the spectrum analyzer to the connector to which this cable was connected.
4. The measured signal on the spectrum analyzer should be at 8.333 MHz .
5. If the signal is not present, replace the faulty first converter. Refer to "Removing and Replacing the A27, A28, A29, and A30 First Converters (Mixers) and Mixer Bias Board" on page 7-50.
6. If the signal is present, reconnect the cable and continue with "Checking the A31 through A34 Receiver Outputs" on page 4-50.

Checking the A31 through A34 Receiver Outputs

Perform this procedure if a problem appears to be in one of the receiver channels.

1. Refer to the block diagram at the end of this chapter and to "Bottom RF Cables, No Options" on page 6-22. Locate the flexible cables W25, W26, W27 and W28 at each receiver IF output.
2. Disconnect the flexible cable at the suspect receiver.
3. Connect the spectrum analyzer to the suspect receiver connector.
4. The measured signal on the spectrum analyzer should be at 41.667 kHz .

- If the measured signal is present, replace the A6 SPAM board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.

5. If the measured signal is not present, verify the receiver operation:
a. Replace the suspect receiver with a known good receiver. You can use a known good receiver from the same analyzer.
b. If the error still occurs, replace the A35 receiver motherboard. Refer to "Removing and Replacing the A35 Receiver Motherboard" on page 7-54.
c. If the replacement receiver functions properly, replace the suspect receiver. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules and LO Reject Filter Board" on page 7-52.

Checking the Frequency Offset Group (Option 080)

CAUTION This section troubleshoots only those circuits specifically related to the frequency offset group (option 080). Please refer to "Where to Begin Troubleshooting" on page 4-30 and refer to the appropriate standard S-parameter test-with frequency offset mode off-before proceeding with this section.

Frequency Offset Group Tests

NOTE A defective A22 switch splitter can exhibit the same symptom as a faulty source. Therefore, if it is determined that the source is functioning properly, you are directed to "Checking the Signal Separation Group" on page 4-45.

Equipment Used for These Tests

Equipment Type	Models Used With	Model or Part Number	Alternate Model or Part Number
Spectrum analyzer	All	8565 E	$856 \times \mathrm{E}^{1}$
RF cable, 3.5 mm (f) to 3.5 mm (f)	E8362B	85131 C	Any
RF cable, 2.4 mm (f) to 2.4 mm (f)	E8363B, E8364B	85133 C	Any
Adapter, 3.5 mm (f) to 3.5 mm (f)	E8362B	83059 B	$85052-60012$
Adapter, 2.4 mm (f) to 2.4 mm (f)	E8363B, E8364B	11900 B	$85056-60007$

1. Must be capable of measuring signals at $1 \mathrm{MHz}, 8.333 \mathrm{MHz}$ and 41.667 MHz .

Getting Ready to Test

Before checking the assemblies, you must open the analyzer.

CAUTION	Use an antistatic work surface and wrist strap to reduce the chance of electrostatic discharge for all of the procedures in this chapter.

1. Turn off the analyzer power.
2. Unplug the power to the analyzer and disconnect all rear panel connections.
3. Remove the covers from the analyzer. Refer to "Removing the Covers" on page 7-6.
4. With the covers off, plug in the analyzer and turn on the power.
5. From Channel, click Frequency Offset. In the Frequency Offset dialog box, click in the Frequency Offset on/off box to select. Click OK.

Checking the A10 5 MHz Reference Output

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Options Including 080 " on page $6-18$. Locate flexible cable W105, at the A10 frequency reference board.
2. Disconnect W105 from A10J11.
3. Connect the spectrum analyzer to A10J11.
4. The spectrum analyzer should measure a signal at 5 MHz .
5. If no 5 MHz signal is present, replace the A10 frequency reference board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the 5 MHz signal is present, reconnect cable W105, and then continue with "Checking the A9 Fractional-N Synthesizer Band 1 Output" on page 4-52.

Checking the A9 Fractional-N Synthesizer Band 1 Output

Perform this procedure if you observe a problem in band 1 of the frequency offset receiver.

1. Refer to the block diagram at the back of this chapter and to "Top Cables, All Options Including 080 " on page 6-18. Locate semi-rigid cable W92, at the A9 fractional-N synthesizer board.

CAUTION Be careful not to damage the center pins of the semi-rigid cable. Some flexing of the cables is necessary to measure the output.
2. Disconnect W92 from A9J101.
3. Connect the spectrum analyzer to A9J101.
4. Set the network analyzer for a 500 MHz CW frequency and observe the spectrum analyzer measurement.

- The spectrum analyzer should measure a signal at 508.33 MHz .

5. If the 508.33 MHz signal is not present and the 5 MHz reference signal is present from "Checking the A10 5 MHz Reference Output," replace the A9 fractional-N synthesizer board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the signal is present, reconnect cable W92, and then continue with "Checking the A9 Fractional-N Synthesizer Band 2 Output" on page 4-52.

Checking the A9 Fractional-N Synthesizer Band 2 Output

Perform this procedure if you observe a problem in band 2 of the frequency offset receiver.

1. Refer to the block diagram at the back of this chapter and to "Top Cables, All Options Including 080" on page 6-18. Locate semi-rigid cable W91, at the A9 fractional-N synthesizer board.

CAUTION Be careful not to damage the center pins of the semi-rigid cable. Some flexing of the cables is necessary to measure the output.
2. Using a 5/16-inch torque wrench, disconnect W91 at A9J106.
3. Connect the spectrum analyzer to A9J106.
4. Set the network analyzer to a CW frequency of 1 GHz .

- The spectrum analyzer should measure a signal at 1.008 GHz .

5. If this signal is not present, replace the A9 fractional-N synthesizer board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
6. If the signal is present, leave the spectrum analyzer connected to A9J106 and continue with "Checking the A9 Fractional-N Synthesizer Bands 3 through 25 Output" on page 4-53.

Checking the A9 Fractional-N Synthesizer Bands 3 through 25 Output

Perform this procedure if you observe a problem in bands 3 through 25 in all receivers.

1. Set the network analyzer to a CW frequency of 2 GHz .

- The spectrum analyzer should measure a signal at 2.008 GHz .

2. If the signal is not present, replace the A9 fractional-N synthesizer board. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
3. If the signal is present, reconnect cable W91, and then continue with "Checking the A12 Source 20 Output" on page 4-53.

Checking the A12 Source 20 Output

Perform this procedure if you observe a problem in any band and all signals from the A9 fractional-N synthesizer are present.

1. Refer to the block diagram at the end of this chapter and to "Top Cables, All Options Including 080" on page 6-18. Locate the semirigid cables W93 at the A12 source 10 output.

CAUTION Be careful not to damage the center pins of the semirigid cable. Some flexing of the cables is necessary to measure the output.
2. Using a $5 / 16$-inch torque wrench, disconnect W93 at the output of the A12 source 10 board.
3. Connect the spectrum analyzer to the A12 source 10 board.
4. Set the network analyzer to a CW frequency of 1 GHz .

- The spectrum analyzer should measure a signal at 1 GHz .

5. If the signal is not present, replace the A12 source 20 board. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.
6. If the signal is present, reconnect cable W93, and then continue with "Checking the A13 Frequency Offset Receiver Band 0 Output" on page 4-53.

Checking the A13 Frequency Offset Receiver Band 0 Output

Perform this procedure if you observe a problem in band 0 and all signals from the A12 source 20 output are present.

1. Refer to the block diagram at the end of this chapter and to "Bottom Flexible Cables, All Options" on page 6-24. Locate the flexible cable W106 at the frequency offset receiver output.

CAUTION Be careful not to damage the center pins of the semirigid cable. Some flexing of the cables is necessary to measure the output.
2. Disconnect the flexible cable at the frequency offset receiver.
3. Connect the spectrum analyzer to the frequency offset receiver connector J6.
4. Set the network analyzer to a CW frequency of 25 MHz .

- The spectrum analyzer should measure a signal at 1.04 MHz .

5. If the measured signal is not present, Replace the A13 receiver. Refer to "Removing and Replacing the A13 Frequency Offset Receiver Assembly" on page 7-24.
6. If the signals are present, reconnect W106, and then continue with "Checking A45 and A46 Switches (Option 081 Only)" on page 4-54.

Checking A45 and A46 Switches (Option 081 Only)

NOTE Before continuing, perform the Operator's check "The Operator's Check" on page 3-10. If the instrument passes the operator's check then the A45 and A46 switches are ok.

If you are still experiencing problems, and your instrument has passed all troubleshooting tests to this point, then contact Agilent (refer to "Contacting Agilent" on page 2-10).

Perform this procedure if the instrument has passed all the frequency offset receiver tests but fails the operator's check and the problem appears to be at the A45 or A46 switches.

- Refer to the block diagram at the end of this chapter, to "Parts Included with Option 014, 080, 081" on page 6-42, and to "Bottom Flexible Cables, All Options" on page 6-24. Locate the semirigid cable W60 on the front panel. Locate the semirigid cables W96 and W99 at the A45 switch input and A45 output respectively.

CAUTION Be careful not to damage the center pins of the semirigid cable. Some flexing of the cables is necessary to measure the output.

1. Disconnect the W60 semirigid cable from the front panel.
2. Connect the spectrum analyzer to the Source Out port.
3. From the Channel menu, click Test Set. In the Test Set dialog box, click External: flow through R1 loop. Click OK.
4. Set the network analyzer to a CW frequency of 1 GHz .

- The spectrum analyzer should measure a signal at 1 GHz .

5. If the measured signal is not present, replace A46 switch. Refer to "Removing and Replacing the A45 and A46 Reference Channel Transfer Switches (Option 081)" on page 7-70.
6. If the measured signal is present, reconnect W60.
7. From the Channel menu, click Test Set. In the Test Set dialog box, click Internal: bypass R1 loop. Click OK.
8. Remove semirigid cable W96 from A45 switch input.
9. Connect the spectrum analyzer to the W96 cable.
10.The spectrum analyzer should measure a signal at 1 GHz .
10. If measured signal is not present replace, A46 switch. Refer to "Removing and Replacing the A45 and A46 Reference Channel Transfer Switches (Option 081)" on page 7-70.
11. If measured signal is present then reconnect W96.
12. Remove W99 from the A45 switch output.
13. Connect the spectrum analyzer to the output of the A45 switch.

15 . The spectrum analyzer should measure a signal at 1 GHz .
16. If the measured signal is not present replace A45 switch. Refer to "Removing and Replacing the A45 and A46 Reference Channel Transfer Switches (Option 081)" on page 7-70.
17. If the instrument passes all the tests to this point but you still have a problem with your PNA, then refer to "Contacting Agilent" on page 2-10.

Agient Technologies

5 Theory of Operation

Information in This Chapter

This chapter provides a general description of the operating theory of the PNA series microwave network analyzers.

- Theory of operation is explained to the assembly level only.
- Component-level circuit theory is not provided.
- Simplified block diagrams are included for each functional group.
- More detailed block diagrams are located at the end of Chapter 4, "Troubleshooting."

Chapter Five at-a-Glance

Section Title	Summary of Content	Start Page
Network Analyzer System Operation	A summary of the theory of operation for the analyzer. A summary of the operation of the five functional groups of the analyzer.	Page 5-3
Source Group Operation	Operation of the assemblies associated with the source group.	Page 5-6
Signal Separation Group Operation	Operation of the assemblies associated with signal separation, including the operation of Option 014.	Page 5-16
Receiver Group Operation	Operation of the assemblies associated with the receiver group.	Page 5-21
Frequency Offset Group Operation (Option 080)	Operation of the assemblies associated with frequency offset mode of operation.	Page 5-24
Digital Processing and Digital Control Group Operation	Operation of the assemblies associated with digital processing and control.	Page 5-26
Power Supply Group Operation	Operation of the power supply assembly group.	Page 5-31

Network Analyzer System Operation

The PNA series network analyzer generates a phase-locked incident signal from the internal synthesized source. By means of signal separation, the incident signal is divided into a reference signal and a test signal. The reference signal is applied to the receiver group, while the test signal is applied to the device under test (DUT) and then to the receiver group. The signals are downconverted and are next sampled and digitally processed. Figure 5-1 is a simplified block diagram of the network analyzer system.

Figure 5-1 System Simplified Block Diagram

Functional Groups of the Network Analyzer

The operation of the network analyzer can be separated into six functional groups. Each group consists of several major assemblies that perform a distinct function in the instrument. Some of the assemblies are related to more than one group, and all the groups, to some extent, are interrelated and affect each other's performance. The six major functional groups are:

- Synthesized Source Group
- Signal Separation Group
- Receiver Group
- Frequency Offset Group
- Digital Processor and Digital Control Group
- Power Supply Group

Synthesized Source Group

The built-in synthesized source generates a swept, stepped, or continuous wave (CW) signal in the frequency ranges as listed in Table 5-1. The source output power is leveled by an internal automatic leveling control (ALC) circuit. In the standard analyzer, a portion of the source signal is routed to one of the reference receivers (R1 or R2), and fed back to the source for phase lock. In the Option 080 (frequency offset mode) analyzer, a portion of the source signal is routed to a frequency offset receiver to provide the phase lock signal. The maximum output power level of the network analyzer at the test ports is shown in Table 5-1.

The operation of the source functional group is described in "Source Group Operation" on page 5-6.

Table 5-1 Frequency Range and Maximum Output Power Level

Frequency Range	$\begin{gathered} 10 \mathrm{MHz} \text { to } \\ 45 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 45 \mathrm{MHz} \\ \text { to } \\ 10 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 10 \mathrm{GHz} \\ \text { to } \\ 20 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 20 \mathrm{GHz} \\ \text { to } \\ 30 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 30 \mathrm{GHz} \\ \text { to } \\ 40 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 40 \mathrm{GHz} \\ \text { to } \\ 45 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 45 \mathrm{GHz} \\ \text { to } \\ 50 \mathrm{GHz} \end{gathered}$
Max. Pwr. Out							
Standard	+2 dBm	$+5 \mathrm{dBm}$	+3 dBm	0 dBm	$-4 \mathrm{dBm}$	$-5 \mathrm{dBm}$	$-10 \mathrm{dBm}$
Opt. 014	$+2 \mathrm{dBm}$	$+5 \mathrm{dBm}$	$+2 \mathrm{dBm}$	$-2 \mathrm{dBm}$	$-6 \mathrm{dBm}$	$-7 \mathrm{dBm}$	$-12 \mathrm{dBm}$
Opt. UNL	0 dBm	$+3 \mathrm{dBm}$	+1 dBm	$-2 \mathrm{dBm}$	$-6 \mathrm{dBm}$	-9 dBm	$-15 \mathrm{dBm}$
Opt. UNL/014	0 dBm	$+3 \mathrm{dBm}$	0 dBm	$-4 \mathrm{dBm}$	$-8 \mathrm{dBm}$	$-11 \mathrm{dBm}$	$-17 \mathrm{dBm}$

Signal Separation Group

The source signal is separated into a reference path and a test path. The reference signal is transmitted to the receiver group. The test signal is transmitted through-and reflected from-the DUT and then is transmitted to the receiver group.

The signal separation group also provides attenuation for the test signals, RF path switching to allow forward and reverse measurements, and external connections for the DUT.

Refer to "Signal Separation Group Operation" on page 5-16.

Receiver Group

The receiver converts the test signal to a 41 kHz intermediate frequency (IF) for signal processing, retaining both magnitude and phase characteristics. The IF signal is converted to a digital signal by the digital processing group.

Refer to "Receiver Group Operation" on page 5-21.

Frequency Offset Group

This group provides the phase lock needed for frequency offset mode (Option 080), where the source and receivers are tuned to different frequencies.

It also provides reference signal transfer switches in the channel R1 reference path for automatically adding or removing an external reference mixer in the measurement setup.

Refer to "Frequency Offset Group Operation (Option 080)" on page 5-24.

Digital Processor and Digital Control Group

The digital processor and digital control group are divided into a front panel group and a data acquisition and processing group. The front panel group provides communication to the network analyzer. The data acquisition and processing group provides signal processing and analyzer control, and output to the display.
Refer to "Digital Processing and Digital Control Group Operation" on page 5-26.

Power Supply Group

The power supply functional group provides power for the other assemblies in the instrument.

Refer to "Power Supply Group Operation" on page 5-31.

Source Group Operation

The source group produces a stable output signal by phase locking a yttrium-iron-garnet (YIG) oscillator to a synthesized voltage-controlled oscillator (VCO). Refer to Table 5-2 on page $5-8$ for the full frequency range of the source. The outputs at the front panel test ports are swept, stepped or CW signals. Maximum leveled output powers are listed in Table 5-1 on page 5-4. For a simple block diagram of the source group, refer to Figure 5-2.

In this section the following characteristics and assemblies of the source group are described:

- Band Modes
- A8 Fractional-N Synthesizer Board
- A17 L.O. Multiplier/Amplifier 10 (LOMA 10)
- A18 Multiplier/Amplifier 20 (MA 20)
- A19 Splitter
- A20 L.O. Distribution Assembly (LODA)
- A10 Frequency Reference Board (including rear-panel interconnects)
- A11 Phase Lock Board
- A12 Source 20
- A21 Source Multiplier/Amplifier 50 (SOMA 50) (E8363B and E8364B Only)
- A16 Test Set Motherboard (including rear-panel interconnects)

Band Modes

Table 5-2 lists the L.O. harmonic number, the synthesizer frequency, the source frequency, and the frequencies at various other locations within the analyzer for each band. This table is referred to throughout this chapter and also appears on the overall block diagram at the end of Chapter 4, "Troubleshooting."

The A10 frequency reference board produces a constant phase locked reference signal of 8.333 MHz which is sent to the A11 phase lock board.

The A8 fractional-N synthesizer board produces an LO signal which is sent through the A17-A20 LO distribution path to the A27-A30 first converters. The frequency is synthesized such that the mixing product of this LO signal with the main source output is a constant 8.333 MHz . In the A31-A34 receiver modules, this 1st IF signal is mixed with the 2 nd LO signals to produce a constant 2 nd IF signal at 41.667 kHz .
A portion of the 1st IF signal is passed through the phase lock multiplexer on the A16 test set motherboard back to the A11 phase lock board to complete the phase lock loop. For Option 080 (frequency offset mode), this phase lock signal comes from the A13 frequency offset receiver. Refer to "Frequency Offset Group Operation (Option 080)" on page 5-24.

The A10 frequency reference board also produces a constant 33.1667 MHz signal which is passed to the A35 receiver motherboard where the frequency is divided by four to produce a constant 2 nd LO signal of 8.29167 MHz . It is then divided into two signals, the 2 nd LO (a) and the 2nd LO (b). The 2nd LO (b) signal is phase shifted $+90^{\circ}$ relative to 2nd LO (a). Both of these signals are then distributed to each of the four receiver modules.

Figure 5-2 Source Group

Table 5-2 Subsweep Frequencies

	$\begin{aligned} & \text { す్ } \\ & \text { ๗̈ } \end{aligned}$		A8 Frac-N Synthesizer Frequency (GHz)	A17 LOMA 10 Frequency (GHz)	A20 LODA (L.O.) Frequency (GHz)	A12 Source 20 Frequency (GHz)	A21 SOMA 50 Frequency (GHz) (E8363/4B Only)
ЯЪ988' ‘g\&988' ‘g7988's	0	1	0.011 to 0.046	0.011 to 0.046	0.011 to 0.046	0.010 to 0.045	0.010 to 0.045
	1	1	0.053 to 0.756	0.053 to 0.756	0.053 to 0.756	0.045 to 0.748	0.045 to 0.748
	2	1	0.756 to 1.508	0.756 to 1.508	0.756 to 1.508	0.748 to 1.500	0.748 to 1.500
	3	1	1.50 to 3.00				
	4	1	1.50 to 1.90	3.00 to 3.80	3.00 to 3.80	3.00 to 3.80	3.00 to 3.80
	5	1	1.90 to 2.25	3.80 to 4.50	3.80 to 4.50	3.80 to 4.50	3.80 to 4.50
	6	1	2.25 to 2.40	4.50 to 4.80	4.50 to 4.80	4.50 to 4.80	4.50 to 4.80
	7	1	2.40 to 3.00	4.80 to 6.00	4.80 to 6.00	4.80 to 6.00	4.80 to 6.00
	8	1	1.50 to 1.60	6.00 to 6.40	6.00 to 6.40	6.00 to 6.40	6.00 to 6.40
	9	1	1.60 to 1.90	6.40 to 7.60	6.40 to 7.60	6.40 to 7.60	6.40 to 7.60
	10	1	1.90 to 2.50	7.60 to 10.00	7.60 to 10.00	7.60 to 10.00	7.60 to 10.00
	11	1	2.50 to 3.00	5.00 to 6.00	10.00 to 12.00	10.00 to 12.00	10.00 to 12.00
	12	1	1.50 to 1.60	6.00 to 6.40	12.00 to 12.80	12.00 to 12.80	12.00 to 12.80
	13	1	1.60 to 1.90	6.40 to 7.60	12.80 to 15.20	12.80 to 15.20	12.80 to 15.20
	14	1	1.90 to 2.00	7.60 to 8.00	15.20 to 16.00	15.20 to 16.00	15.20 to 16.00
	15	1	2.00 to 2.50	8.00 to 10.00	16.00 to 20.00	16.00 to 20.00	16.00 to 20.00
E8363B, E8364B	16	3	1.67 to 1.90	6.67 to 7.60	6.67 to 7.60	10.00 to 11.40	20.00 to 22.80
	17	3	1.90 to 2.13	7.60 to 8.53	7.60 to 8.53	11.40 to 12.80	22.80 to 25.60
	18	3	2.13 to 2.50	8.53 to 10.00	8.53 to 10.00	12.80 to 15.00	25.60 to 30.00
	19	3	2.50 to 2.67	5.00 to 5.33	10.00 to 10.67	15.00 to 16.00	30.00 to 32.00
	20	3	2.67 to 3.00	5.33 to 6.00	10.67 to 12.00	16.00 to 18.00	32.00 to 36.00
	21	3	1.50 to 1.60	6.00 to 6.40	12.00 to 12.80	18.00 to 19.20	36.00 to 38.40
	22	3	1.60 to 1.67	6.40 to 6.67	12.80 to 13.33	19.20 to 20.00	38.40 to 40.00
	23	3	1.67 to 1.90	6.67 to 7.60	13.33 to 15.20	10.00 to 11.40	40.00 to 45.60
	24	3	1.90 to 2.00	7.60 to 8.00	15.20 to 16.00	11.40 to 12.00	45.60 to 48.00
	25	3	2.00 to 2.08	8.00 to 8.33	16.00 to 16.67	12.00 to 12.50	48.00 to 50.00

A8 Fractional-N Synthesizer Board

The A8 fractional-N synthesizer board uses the 5 MHz reference signal from the A10 frequency reference board to tune two VCO circuits: one that sweeps from 1500 to 3010 MHz and one that is set to a CW frequency of 2250 MHz . In bands $0-1$, these two signals are heterodyned to produce the output frequencies listed in Table 5-2. In band 2, the output of the swept VCO is passed through a divide-by-2 circuit to produce the output frequencies listed in Table 5-2. In all other bands, the swept VCO signal is sent directly to the synthesizer output.

At the output, an ALC circuit maintains the power level at $-5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for bands $0-1$ or $-1.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for bands $2-25$. In all bands, the output is sent to the A17-A20 LO distribution path and on to the A27-A30 first converters, as the 1st LO signal.

A17 L.O. Multiplier/Amplifier 10 (LOMA 10)

In bands $0-3$, the input signal from the A8 fractional-N synthesizer board is passed through the A17 LOMA 10 unchanged. For all other bands, the signals are doubled, filtered, and amplified. In bands $8-10,12-18$, and $21-25$, the signals are again doubled, filtered, and amplified. Together, all of these signal paths create the full output frequency range of 11 MHz to 10 GHz .

A18 Multiplier/Amplifier 20 (MA 20)

In bands $0-10$ and $16-19$, the 11 MHz to 10 GHz input frequencies are filtered, amplified, and passed through the A18 MA 20. In bands $11-15$, and $20-25$, the signals are doubled, filtered, and amplified.
Together, these signal paths create the full output frequency range of 11 MHz to 20 GHz that is sent to the A19 splitter.

A19 Splitter

The A19 splitter receives the 11 MHz to 20 GHz LO signal from the A8, A17, and A18 LO generation chain and divides it into two signals which are routed to the A20 L.O. distribution assembly (LODA). This splitter configuration provides the highest level of balance and control of the LO signal.

A20 L.O. Distribution Assembly (LODA)

In the A20 LODA, the LO signal is amplified and split to provide balanced LO signals to each of the A27-A30 receiver first converters.

A10 Frequency Reference Board

This assembly provides stable reference frequencies to the rest of the instrument. A high stability 10 MHz oven-controlled crystal oscillator (OCXO) normally provides the frequency standard. However, if a 10 MHz external reference signal is detected at the 10 MHz EXT REF IN port on the rear panel, it is used as the frequency reference instead.
The 10 MHz reference signal is used to phase lock a 100 MHz VCO. This VCO is then used to phase lock a second VCO at 99.5 MHz . It is also used to provide the 10 MHz EXT REF OUT rear panel signal, reference for the A11 phase lock board, and a 5 MHz reference for the A6 signal processing ADC module (SPAM) board, the A8 fractional-N synthesizer board, and the A9 fractional-N synthesizer board (Option 080 only).

The 95.5 MHz reference signal is sent through a divide-by- 3 circuit to produce the fourth multiple of the 8.21966 MHz 2nd LO signal which is sent to the A35 receiver motherboard. The 100 MHz reference signal is sent through a divide-by- 12 circuit to produce the 8.3333 MHz phase lock reference signal which is sent to the A11 phase lock board.

Rear-Panel Interconnects

$\mathbf{1 0 ~ M H z ~ R E F . ~ I N P U T ~}$	A BNC connector that allows an external frequency reference signal to be used to phase lock the analyzer for increased frequency accuracy. The analyzer automatically enables the external frequency reference feature when a signal is connected to this input. When the signal is removed, the analyzer automatically switches back to its internal frequency reference.
$\mathbf{1 0 ~ M H z ~ R E F . ~ O U T P U T ~}$	A BNC connector that allows a 10 MHz reference signal, produced by the A10 frequency reference board, to be output for use in phase locking external test equipment.

A11 Phase Lock Board

The A11 phase lock board compares the phase lock IF signal from the A16 test set motherboard with the phase lock reference signal from the A10 frequency reference board to generate the tuning voltage for the A12 source 20 YIG-tuned oscillator (YTO). In addition, various digital-to-analog converters (DACs) on this assembly are set by the A6 SPAM board to inject offset and delay voltages for the various source bands and measurement sweep rates.

A12 Source 20

The A12 source 20 consists of:

- Source 10
- Multiplier/Amplifier 20 (MA 20)
- ALC Circuitry

Source 10

The A12 source 20 contains a $3-10 \mathrm{GHz}$ YIG-tuned oscillator (YTO) and a fixed frequency 3.8 GHz permanent-magnet YIG oscillator (PMYO).

The YTO has a main coil and an FM coil. These are analogous to the woofer and the tweeter in a stereo speaker: the woofer reproduces low frequencies and the tweeter reproduces high frequencies. Similarly in the YTO, the main coil allows large, slow changes in frequency but cannot respond to high frequency deviations, which are sent to the faster-acting FM coil.

The tune current from the A11 phase lock board splits into two paths. One path is low-pass filtered, removing high frequency components, and goes to the YTO main coil; the other path is highpass filtered, removing low frequency components, and goes to the YTO FM coil. The filters are matched in stop-band response, such that one picks up where the other leaves off.

The frequency of the PMYO is set by a voltage received from a DAC set by the A6 SPAM board.

In bands $0-3$, the 3.810 to 6.8 GHz output of the YTO and the 3.8 GHz output of the PMYO are mixed to produce the 10 MHz to 3.0 GHz output frequency that is sent to the multiplier/amplifier 20 (MA 20). In bands $4-25$, the 3 to 10 GHz output of the YTO is filtered and sent directly to the MA 20.

An additional signal is split off from the output signal and routed to the A13 Frequency Offset Receiver Assembly where it is used to create the phase lock signal for the frequency offset mode of operation (Option 080). Refer to Frequency Offset Group Operation (Option 080).

Multiplier/Amplifier 20 (MA 20)

The MA 20 filters, amplifies, and passes through, the 10 MHz to 10 GHz output frequencies in bands $0-10$. The signals for bands $11-25$ are doubled, filtered, and amplified. Together, these two paths produce an output frequency range of 10 MHz to 20 GHz .

For the E8362B analyzer, this signal is sent directly to the A22 switch splitter in the signal separation group.
For the E8363B and E8364B analyzers, this signal is sent to the A21 source multiplier/amplifier 50 (SOMA 50).
A portion of this output signal is split off and combined with other inputs in the ALC circuitry to control the output power level.

ALC Circuitry

The following inputs are combined in the ALC circuitry to produce a signal that is sent to the MA20 to control its output power level:

- output of the MA 20
- temperature compensation
- slope compensation
- power level DAC
- $1 \mathrm{~V} / \mathrm{GHz}$ signal from the A11 phase lock board

A21 Source Multiplier/Amplifier 50 (SOMA 50) (E8363B and E8364B Only)

The A21 SOMA 50 consists of three signal paths:

- In the first path, the 10 MHz to 20 GHz source signals for bands $0-15$ are amplified, leveled, and passed through to the A22 switch splitter.
- In the second path, the 10 to 20 GHz signals for bands 16 - 22 are doubled, filtered, and amplified to produce the 20 to 40 GHz output.
- In the third path (E8364B only), a portion of the second-path signal is doubled to produce the 40 to 50 GHz output for bands $23-25$.

The source ALC circuitry (located on the A16 test set motherboard) provides feedback to the SOMA 50 to control the output power level.

A16 Test Set Motherboard

The A16 test set motherboard serves these functions:

- to act as an interface between the A15 CPU board and the auxiliary rear panel interconnects.
- to provide ALC signals to the A21 SOMA 50 and to the A18 multiplier/amplifier.
- to route control signals to the signal separation group. Refer to "Signal Separation Group Operation" on page 5-16 for more information.

Rear Panel Interconnects

The A16 test set motherboard includes the following rear panel interconnects.

TEST SET I/O	A DB-25 female connector that is used to control external test sets. The external test set bus consists of 13 multiplexed address and data lines, three control lines, and an open-collector interrupt line. Pin assignments are listed in Table 5-3 on page 5-13. Up to 16 test sets may be "daisy-chained" on the bus at one time. The Test Set I/O is not compatible with 8753 network analyzer test sets.
HANDLER I/O	A rectangular 36-pin, female connector providing four independent parallel input/output ports, nine control signal lines, one ground, and a power supply line. This connector has Type 2 output pin assignments as listed in Table 5-4 on page 5-14. All signals are TTL-compatible. Data input/output ports consist of two 8-bit output ports (Port A and Port B) and two 4-bit bidirectional ports (Port C and Port D). Connector settings can be changed using SCPI and COM commands. The settings are not accessible from the front panel.
AUX I/O	A DB-25 male connector that provides a variety of both analog and digital input and output signals as described in Table 5-5 on page 5-15.
I/O 1 (TRIG IN)	A BNC connector for input of an external trigger. The analyzer can be triggered by an external device using this input. This is the same signal that appears on AUX I/O pin 19 as described in Table 5-5 on page 5-15.
I/O 2 (TRIG OUT)	A BNC connector for output of a trigger signal. This trigger signal can be used to trigger external devices used in the measurement setup, such as signal generators.

Table 5-3 TEST SET I/O Connector Pin Assignments

Table 5-4 HANDLER I/O Connector Key Pin Assignments

Rectangular 36-Pin Female Connector		
Pin Numbers	Name	Function
1	GND	0 V , ground reference
2	INPUT1	TTL in, negative pulse ($1 \mu \mathrm{~s} \mathrm{~min}$) latches OUTPUT1-2
3-4	OUTPUT1-2	TTL out, latched
5-12	Port A0-7 Out	TTL out, latched
13-20	Port B0-7 Out	TTL out, latched
21-24	Port C I/O	TTL I/O, latched
25-28	Port D I/O	TTL I/O, latched
29	Port C Status	TTL out, low = input mode, high = output mode
30	Port D Status	TTL out, low = input mode, high = output mode
31	Output Strobe Write Strobe	TTL out, active low data write strobe ($1 \mu \mathrm{~s} \mathrm{~min}$)
32	No connect	Not used
33	Pass Fail	TTL out, latched, indicates pass fail (programmable polarity)
34	+5 V	$+5 \mathrm{Vdc}, 100 \mathrm{~mA}$ max.
35	Sweep End	TTL out, active low ($10 \mu \mathrm{~s}$ min) indicates sweep done
36	Pass/Fail Write Strobe	TTL out, active low pass/fail write strobe ($1 \mu \mathrm{~s} \mathrm{~min}$)

Table 5-5 AUX I/O Connector Pin Assignments

DB-25 Male Connector		
Pin Numbers	Name	Function
1	ACOM	0 V , ground reference for analog signals
2-3	Analog Out 2-1	-10 to +10 Vdc output, 10 mA max, $\mathrm{Ro}=100 \Omega$
4	No connect	For future enhancements
5	DCOM	0 V , ground reference for digital signals
6-8	Pulse Out 3-1	TTL out, programmable pulse (for future use)
9	+5 V	+5 Vdc output, 100 mA max.
10	Pass/Fail Write Strobe	TTL out, active low ($1 \mu \mathrm{~s} \mathrm{~min}$) indicates pass/fail line is valid
11	Sweep End	TTL out, active low ($10 \mu \mathrm{~s} \mathrm{~min}$) indicates sweep is done
12	Pass/Fail	TTL out, latched, indicates pass or fail (programmable polarity)
13	Output Port Write Strobe	TTL out, active low (10 $\mu \mathrm{s} \mathrm{min}$) writes I/O port data
14	Analog In	-10 to +10 Vdc input, $\mathrm{Ri}=100 \mathrm{k} \Omega$
15	ACOM	0 V , ground reference for analog signals
16	Power Button In	Open-collector input, active low replicates a power button press
17	DCOM	0 V , ground reference for digital signals
18	Ready for Trigger	TTL out, low indicates ready for external trigger
19	External Trigger In	TTL in, level trigger (width >1 $\mu \mathrm{s}$), programmable polarity
20	Footswitch In	TTL in, active low (width $>1 \mu \mathrm{~s}$), triggers a programmable event
21	+22 V	+22 Vdc output, 100 mA max.
22-25	In/Out Port C0-3	TTL I/O, general purpose

Signal Separation Group Operation

The signal separation group divides the source signal into a reference path and a test path. Refer to Figure 5-3 on page 5-17.

- The reference signal is transmitted to the receiver group.
- The test signal is transmitted through—and reflected from—the device under test (DUT) and then is transmitted to the receiver group.
- Control lines to this group are routed from the A16 test set motherboard.

In this section, the following assemblies are described:

- A22 Switch Splitter
- A25 and A26 Test Port Couplers
- A23 and A24 Detectors (E8363B and E8364B Only)
- 30-dB Fixed Attenuators (E8362B Only)
- A36 and A37 60-dB Source Step Attenuators (Option UNL)
- A38 and A39 Bias Tees (Option UNL)
- A43 and A44 35-dB Receiver Step Attenuators (Option 016)
- Front Panel Jumpers (Option 014 Configurable Test Set)

A22 Switch Splitter

For the E8363B and E8364B, the output of the A21 SOMA 50 is routed to the A22 switch splitter. For the E8362B, this is the output of the A12 source 20 assembly. The A22 switch splitter is a solid-state switch. It switches between the Port 1 and Port 2 measurement paths, automatically enabling alternate forward and reverse measurements. The A22 switch splitter provides an internal termination for the measurement port that is inactive.
Each measurement path in the A22 switch splitter includes a two-way splitter; the signal is split into the test port signal and the receiver signal.
The test port signal is sent directly through the test port coupler, A25 or A26, and out through either PORT 1 or PORT 2 to the DUT, unless Option UNL is installed. In this case, the signal is routed through the step attenuator, A36 or A37, the bias tee, A38 or A39, then through the test port coupler and test port to the DUT.
The reference signal is routed to the appropriate R channel receiver module, A32 or A33, through a detector, A23 or A24 (for E8363B and E8364B), or a 30-dB fixed attenuator (for E8362B), and a receiver first converter, A28 or A29. If Option 014 is installed, the signal is routed through a front-panel channel R jumper to the receiver first converter.

Figure 5-3 Signal Separation Group, Standard Analyzer

A25 and A26 Test Port Couplers

The test port signal goes into the through-line arm of the couplers, and from there to the test ports and the DUT. The coupled arm of the couplers carries the signal reflected from or transmitted through the DUT, to the receiver (through a front panel jumper for Option 014) for measurement. The coupling coefficient of the directional couplers is nominally 15 dB over the full frequency range.

A23 and A24 Detectors (E8363B and E8364B Only)

The A23 and A24 detectors sense the R1 and R2 reference signal levels and provide feedback to the ALC circuitry on the A16 test set motherboard.

30-dB Fixed Attenuators (E8362B Only)

The $30-\mathrm{dB}$ fixed attenuators are placed in the reference signal paths to provide isolation.
The source power output is sufficiently stable over this frequency range that ALC feedback is not necessary.

A36 and A37 60-dB Source Step Attenuators (Option UNL)

The $60-\mathrm{dB}$ step attenuators provide coarse power control for the test port signals. They are electro-mechanical step attenuators that provide 0 to 60 dB of attenuation in $10-\mathrm{dB}$ steps. These attenuators are controlled by the A15 CPU board. They adjust the power level to the DUT without changing the level of the incident power in the reference path.

A38 and A39 Bias Tees (Option UNL)

The A38 and A39 bias tees provide a means of biasing active devices with an external dc voltage connected to the rear-panel DC BIAS CONNECT ports. The dc voltage is applied directly to the center conductor of the test port connectors. A blocking capacitor ensures that the dc bias current goes only to the DUT, and not back into the source. Similarly, an inductor in the bias path prevents RF from being imposed on the external dc supply.

A43 and A44 35-dB Receiver Step Attenuators (Option 016)

These $35-\mathrm{dB}$ step attenuators provide coarse power control for amplified input. They are electro-mechanical step attenuators that provide 0 to 35 dB of attenuation in $5-\mathrm{dB}$ steps. These attenuators are controlled by the A15 CPU board.

Option 014 Configurable Test Set

The Option 014 analyzer allows you to measure devices with higher power and higher dynamic range limits than the standard analyzer. The theory of operation is the same as for the standard analyzer except that there are six front panel SMA jumpers.

As shown in Figure 5-4 on page 5-19, these jumpers allow access to the test port and reference signals between:

- the A22 switch splitter and the A25 test port 1 coupler. (For Option UNL, this is between the A36 step attenuator and the A38 bias tee.)
- the A22 switch splitter and the A26 test port 2 coupler, (For Option UNL, this is between the A37 step attenuator and the A39 bias tee.)
- the A25 test port 1 coupler and the A27 receiver A first converter
- the A26 test port 2 coupler and the A30 receiver B first converter
- the A23 detector (for E8363B and E8364B) or fixed attenuator (for E8362B) and the A28 receiver R1 first converter
- the A24 detector (for E8363B and E8364B) or fixed attenuator (for E8362B) and the A29 receiver R2 first converter

Normal Option 014 Configuration

The normal configuration for the Option 014 is shown in Figure 5-4 on page 5-19. With this configuration and inclusion of an external amplifier and accessories, you can calibrate the analyzer and test devices at power levels up to +30 dBm . You can make measurements in the forward, reverse or both directions and still achieve these high power levels. For more information on higher power measurements, search for "Option 014" in the embedded help index in the analyzer.

Figure 5-4 Signal Separation Group, Option 014 Analyzer

High Dynamic Range Configuration

With a few jumper changes, you can configure the Option 014 for higher dynamic range measurements. By swapping the front panel jumpers for one port, signal flow through the corresponding coupler is reversed, increasing the test signal sensitivity by 15 dB .
In the forward direction, as shown in Figure 5-5, the signal flow through the test port coupler (A26) is reversed by arranging the front panel jumpers such that RCVR B IN connects to CPLR THRU and CPLR ARM connects to SOURCE OUT.

In the reverse direction, not shown, the signal flow through the test port coupler (A25) is reversed by arranging the front panel jumpers such that RCVR A IN connects to CPLR THRU and CPLR ARM connects to SOURCE OUT.
For more information on high dynamic range measurements and configurations, search for "Option 014 " in the embedded help index in the analyzer.
Figure 5-5 High Dynamic Range Configuration in the Forward Direction

Receiver Group Operation

The receiver group measures and processes the input signals into digital information for processing and eventual display. Figure 5-6 on page 5-22 is a simplified block diagram of the receiver functional group.
In this section the following assemblies are described:

- A27, A28, A29, and A30 Receiver First Converters (Mixers)
- LO Reject/Filter Board
- A31, A32, A33, and A34 Receiver Modules
- A6 SPAM Board (Analog Description)
- A35 Receiver Motherboard
- A16 Test Set Motherboard

A27, A28, A29, and A30 Receiver First Converters (Mixers)

The four receiver first converters (mixers) function identically and are completely interchangeable.

Each first converter receives the RF reference or test signal and mixes it with the 1st LO signal from the A20 LODA to create the 1st IF signal at a constant 8.333 MHz for bands $1-25$ or 1.0416 MHz for band 0 . This 1 st IF signal is sent to the LO reject/filter board.

LO Reject/Filter Board

In each of the four channels, a 1.3 MHz lowpass filter is switched into the signal path for band 0 , to allow only the 1 st IF signal of 1.0416 MHz to pass but all higher frequencies to be blocked.

A31, A32, A33, and A34 Receiver Modules

The four receiver modules function identically and are completely interchangeable.
The 8.33 MHz 1st IF signal i8s filtered and amplified. For bands 16-25, additional amplification is applied to overcome conversion loss of the A27-A30 first converters in their third-order conversion mode.

A portion of the 8.333 MHz 1st IF signal is sent to a multiplexer on the A35 receiver motherboard, the output of which is routed to the A11 phase lock board to complete the phase lock loop. The 8.333 MHz 1st IF signal is also filtered, amplified, and routed to the 2nd converter.

The 2nd converter divides the 8.333 MHz signal into two paths and mixes each with a separate LO signal, designated 2nd LO (a) and 2nd LO (b). Both of these 2nd LO signals are 8.29167 MHz . The 2 nd LO (b) signal is phase shifted $+90^{\circ}$ relative to the 2 nd LO (a) signal. These two generated 2nd IF signals are a constant 41.667 kHz . These 2nd IF (a) and 2 nd IF (b) signals are phase shifted -45 degrees and +45 degrees, respectively. These signals are summed together and routed to the A6 signal processing and ADC module (SPAM) board.

Figure 5-6 Receiver Group

A6 SPAM Board (Analog Description)

The A6 SPAM board contains digital and analog circuitry. For digital descriptions, refer to "A6 SPAM Board (Digital Description)" on page 5-29.

In this assembly, the 2nd IF signals from the A, B, R1, and R2 second converters go through a gain stage where signals less than -40 dBm are amplified by 34 dB to ensure that they can be detected by the analog-to-digital converter (ADC).

All four signals are sampled simultaneously by the ADCs, where they are converted to digital form. The ADC conversions are triggered by timing signals from the digital signal processor (DSP) in response to commands from the central processing unit (CPU). The digitized data is processed into magnitude and phase data by the DSP and sent to the CPU random access memory (RAM) by way of the peripheral component interconnect (PCI) bus.

The processed and formatted data is finally routed to the display, and to the general-purpose interface bus (GPIB) for remote operation. Refer to "Digital Processing and Digital Control Group Operation" on page 5-26 for more information on signal processing.

A35 Receiver Motherboard

The A35 test set motherboard:

- supplies power and signal leveling control to the A31, A32, A33, and A34 receiver modules
- selects a phase lock signal and routes it to the A11 phase lock board
- receives the 2nd LO signal from the A10 frequency reference board

Power and Signal Leveling Control

Power and signal leveling control signals are received from the A16 test set motherboard and routed to each of the receiver modules.

Phase Lock Control

A portion of the 8.333 MHz 1st IF signal from each of the receiver modules is routed to a multiplexing circuit. For Option 080 (frequency offset mode), an additional signal is input to the multiplexer from the A13 Frequency Offset Receiver Assembly. With control from the A15 CPU board, one of these five signals is selected for routing to the A11 phase lock board to complete the phase lock loop.

2nd LO Control

The 33.1667 MHz signal from the A10 frequency reference board is divided by four, and then divided into two paths, designated 2nd LO (a) and 2nd LO (b). The 2nd LO (b) signal is phase shifted $+90^{\circ}$ relative to the 2nd LO (a) signal.

Frequency Offset Group Operation (Option 080)

The frequency offset group provides the circuitry necessary to phase lock the analyzer while the source and receiver are tuned to different frequencies. Figure $5-7$ on page $5-25$ is a simplified block diagram of the frequency offset functional group.
In this section the following assemblies are described:

- A9 Fractional-N Synthesizer Board
- A13 Frequency Offset Receiver Assembly
- A45 and A46 Reference Transfer Switches (Option 081)

A9 Fractional-N Synthesizer Board

The A9 fractional-N synthesizer is identical to the A8 fractional-N synthesizer.
The A9 fractional-N synthesizer board uses the 5 MHz reference signal from the A10 frequency reference board to tune two VCO circuits: one that sweeps from 1500 to 3010 MHz and one that is set to a CW frequency of 2250 MHz . In bands $0-1$, these two signals are heterodyned to produce the output frequencies listed in Table 5-2 on page 5-8. In band 2 , the output of the swept VCO is passed through a divide-by- 2 circuit to produce the output frequencies listed in Table 5-2. In all other bands, the swept VCO signal is sent directly to the synthesizer output.

At the output, an ALC circuit maintains the power level at $-5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for bands $0-1$ or $-1.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for bands $2-25$. In all bands, the output is sent to the A13 frequency offset receiver assembly.

A13 Frequency Offset Receiver Assembly

The A13 frequency offset receiver assembly consists of a frequency offset receiver board and a separate receiver module.

The output of the A9 fractional-N synthesizer board is directed to the receiver module where it is mixed with a signal from the A12 source assembly to produce a phase lock output signal.

This phase lock signal is sent to a multiplexer on the A35 receiver motherboard, the output of which is routed to the A11 phase lock board to complete the phase lock loop. Refer to "Phase Lock Control" on page 5-23.

A45 and A46 Reference Transfer Switches (Option 081)

The A45 and A46 reference transfer switches are used to direct the reference signal to either an external reference mixer or directly to the A28 channel R1 first converter (mixer). Refer to "A27, A28, A29, and A30 Receiver First Converters (Mixers)" on page 5-21.
This allows an external reference mixer to be switched in or out of the measurement setup without the need to manually disconnect and reconnect cables.

Figure 5-7 Frequency Offset Group

Digital Processing and Digital Control Group Operation

The digital processor and control group provides digital control for the entire analyzer. It provides:

- front panel operation,
- output to the display,
- math processing functions, and
- communications between the analyzer and an external controller or peripherals.

A block diagram of the digital control functional group is shown in Figure 5-8 on page 5-27.
The digital control functional group consists of two subgroups:

- Front Panel Subgroup
- A1 Keypad Assembly
- A2 Display Assembly
- A3 Front Panel Interface Board
- A14 system motherboard
- Data Acquisition and Processing Subgroup
- A6 SPAM Board (Digital Description)
- A15 CPU Board
- A40 Floppy Disk Drive
- A41 Hard Disk Drive
- USB Hub

Figure 5-8 Digital Processing and Digital Control Group

Front Panel Subgroup

The front panel subgroup contains the following assemblies:

- A1 Keypad Assembly
- A2 Display Assembly
- A3 Front Panel Interface Board

A1 Keypad Assembly

The A1 keypad assembly provides user interface to the analyzer. The front panel rotary pulse generator (RPG) knob is not electrically connected to the keypad, but rather provides user inputs directly to the front panel processor.

A2 Display Assembly

The A2 display assembly contains an 8.4-inch LCD with associated drive circuitry and backlight inverter. Two cables between the A2 display assembly and the A3 front panel interface board provide all necessary power and data for normal operation. The two cables are:

1. A cable to the inverter that supplies buffered power.
2. A cable to the display circuitry that supplies decoded data from the video processor on the A15 CPU board and the necessary drive circuit power. The video data received from the A15 CPU board includes the following:

- digital TTL horizontal sync
- digital TTL vertical sync
- digital TTL red video
- digital TTL green video
- digital TTL blue video
- blanking
- data clock

A3 Front Panel Interface Board

The A3 front panel interface board detects and decodes user inputs from the A1 keypad assembly and front panel knob, and transmits them to the A15 CPU board by way of the A14 system motherboard. It also decodes video data from the video processor on the A15 CPU board and supplies this to the A2 display assembly. Power from the power bus on the A14 system motherboard is buffered and routed to the A1 keypad assembly and the A2 display assembly. All data and power signals are routed through a single cable connector to the A14 system motherboard.

The A3 front panel interface board also includes the following items:

USB	A universal serial bus (USB) jack (an industry standard 4-pin connector).
Probe Power	Two identical connectors (fused inside the instrument) that supply power to an active probe for in-circuit measurements of ac circuits.
Speaker	A speaker that emits the audio signals received from the A15 CPU board.

Data Acquisition and Processing Subgroup

The data acquisition and processing subgroup contain the following assemblies. See Figure 5-8 on page 5-27.

- A6 SPAM Board (Digital Description)
- A15 CPU Board (including rear-panel interconnects)
- A40 Floppy Disk Drive
- A41 Hard Disk Drive
- USB Hub

A6 SPAM Board (Digital Description)

The A6 SPAM board contains digital and analog circuitry. For analog descriptions, refer to "A6 SPAM Board (Analog Description)" on page 5-23.
The digital signal processor (DSP) receives digitized data from the digital circuitry of the A6 SPAM board. It computes discrete Fourier transforms to extract the complex phase and magnitude data from the 41.667 kHz IF signal. The resulting raw data is written into the main random access memory (RAM). The data taking sequence is triggered either externally from the rear panel or by firmware on the A15 CPU board.

A15 CPU Board

The A15 CPU board contains the circuitry to control the operation of the analyzer. Some of the components include the central processing unit (CPU), memory (EEPROM, ROM, RAM), bus lines to other board assemblies, and connections to the rear panel. Some of the main components are described next:

- CPU
- Main RAM
- Rear Panel Interconnects

CPU The central processing unit (CPU) is a microprocessor that maintains digital control over the entire instrument through the instrument bus. The CPU receives external control information from the keypad, any USB device, LAN or GPIB, and performs processing and formatting operations on the raw data in the main RAM. It controls the DSP, the video processor, and the interconnect port interfaces. In addition, when the analyzer is in the system controller mode, the CPU controls peripheral devices through the peripheral port interfaces.

Front panel settings are stored in SRAM, with a battery providing at least five years of backup storage when external power is off.

Main RAM The main random access memory (RAM) is shared memory for the CPU and the DSP. It stores the raw data received from the DSP while additional calculations are performed on it by the CPU. The CPU reads the resulting formatted data from the main RAM, converts it to a user-definable display format, and writes this to the video processor for display.

Rear Panel Interconnects The rear panel includes the following interfaces:

USB	A universal serial bus (USB) jack (an industry standard 4-pin connector).
GPIB	A 24-pin, female, type D-24 connector that meets IEEE-488 standards.
Serial	A 9-pin, male, RS-232 compatible, D-sub connector.
Parallel	A 36-pin, mini-D, 1284-C connector that provides connection to printers or any other parallel port peripheral.
LAN	A standard 8-pin, 10/100BaseT, Ethernet connection. It auto selects between the two data rates.
Display (VGA)	A 15-pin, female, D-sub connector that provides a video output of the analyzer display that can be viewed on an external VGA monitor.

A40 Floppy Disk Drive

The A40 floppy disk drive allows you to store and recall instrument states and measurement results on a 3.5 inch, 1.44 MB floppy disk. This assembly is connected directly to the A14 system motherboard.

A41 Hard Disk Drive

The hard disk drive assembly (HDDA) is an integrated development environment (IDE) data storage device which is connected directly to the A15 CPU board. The full operating system and firmware for the network analyzer is stored on the A41 hard disk drive.

USB Hub

The rear-panel mounted, internal USB hub provides four additional USB ports for connection of external USB compatible devices.

Power Supply Group Operation

The A4 power supply assembly is a switching power supply operating at 103 kHz switching frequency. The input power ranges for the power supply are 90 to 132 Vac or 195 to 250
Vac. The power supply automatically senses the input voltage and switches between these two ranges.
The dc output voltages are:

- +5.2 V
- -5.2 V
- +9 V
- +15 V
- +15 V standby (always on)
- -15 V
- +22 V
- VCC (5.2 V for the A15 CPU board)
- VDL (3.3 V to the A15 CPU board)

The +15 V standby line remains on continuously whenever the power supply is plugged in. This line is used to provide power to front panel LEDs and CPU components when the analyzer is turned off.

An additional +32 V supply line is generated on the A 14 system motherboard from the +22 V supply line.

NOTE	If the power supply senses an over-voltage or over-current condition on any of the supply lines, the power supply will cycle on and off at a low voltage level (burp mode).

6 Replaceable Parts

Information in This Chapter

This chapter:

- identifies the replaceable parts for the Agilent PNA series microwave network analyzers.
- includes several tables and illustrations to assist you in identifying the correct part for your analyzer.
- contains ordering information for new assemblies and rebuilt-exchange assemblies.

Chapter Six at-a-Glance

Section Title	Summary of Content	Start Page
Ordering Information	How to order a replaceable part from Agilent Technologies.	Page 6-3
Assembly Replacement Sequence	The correct sequence for replacing a defective assembly.	Page 6-4
Rebuilt-Exchange Assemblies	The definition of a rebuilt-exchange assembly. The procedure for replacing and returning a defective assembly to Agilent Technologies.	Page 6-5
Replaceable Parts Listings	A table that lists the assemblies by reference designator.	Lists and illustrated locations of the replaceable parts in your analyzer: - Assemblies (front panel, top, and bottom) - Cables (top and bottom)
Page 6-6		

Ordering Information

To order a part listed in the replaceable parts lists:

- include the part number
- indicate the quantity required
- Contact Agilent Technologies for instructions on where to send the order. Refer to "Contacting Agilent" on page 2-10.

To order a part that is not listed in the replaceable parts lists:

- include the instrument model number and complete instrument serial number
- include the description and function of the part
- indicate the quantity required
- Contact Agilent Technologies for instructions on where to send the order. Refer to "Contacting Agilent" on page 2-10.

Assembly Replacement Sequence

The following steps outline the sequence to be performed to replace an assembly in the network analyzer.

Step 1. Identify the faulty group. Begin with Chapter 4, "Troubleshooting." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.

Step 2. Order a replacement assembly. Refer to this chapter.
Step 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 7, "Repair and Replacement Procedures."

Step 4. Perform the necessary adjustments. Refer to Chapter 3, "Tests and Adjustments."
Step 5. Perform the necessary performance tests. Refer to Chapter 3, "Tests and Adjustments."

Rebuilt-Exchange Assemblies

Under the rebuilt-exchange assembly program:

- Certain factory-repaired and tested assemblies are available on a trade-in basis.
- Exchange assemblies are offered for lower cost than a new assembly, but meet all factory specifications required of a new assembly.
- The defective assembly must be returned for credit under the terms of the rebuilt-exchange assembly program.
- Spare assembly stock desired should be ordered using the new assembly part number.

Figure 6-1 Module Exchange Procedure

The module exchange program described here is a fast, efficient, economical method of keeping your instrument in service.

Replaceable Parts Listings

This section contains the replacement part numbers and their descriptions for your Agilent PNA series microwave network analyzer. You can find the locations of replaceable parts in this section:
listed

- by reference designator in Table 6-1, or
- listed by the type of part in Table 6-2.

Table 6-1 Location by Reference Designator

Reference Designator	Description	Location
$\begin{aligned} & \text { A1 } \\ & \text { A2 } \\ & \text { A3 } \end{aligned}$	Keypad assembly Display assembly Front panel interface board	"Front Panel Assembly, All Options" on page 6-10
$\begin{aligned} & \text { A4 } \\ & \text { A6 } \\ & \text { A8 } \end{aligned}$	Power supply assembly Signal processing ADC module (SPAM) board Fractional-N synthesizer board	"Top Assemblies and Hardware, All Options Except 080" on page 6-12
A9	Fractional-N synthesizer board (Option 080)	"Top Assemblies and Hardware, All Options Including 080" on page 6-16
$\begin{aligned} & \hline \text { A10 } \\ & \text { A11 } \\ & \text { A12 } \end{aligned}$	Frequency reference board Phase lock board Source 20	"Top Assemblies and Hardware, All Options Except 080" on page 6-12
A13	Frequency offset receiver assembly (Option 080)	"Top Assemblies and Hardware, All Options Including 080" on page 6-16
$\begin{aligned} & \mathrm{A} 14 \\ & \text { A15 } \end{aligned}$	System motherboard CPU board	"Top Assemblies and Hardware, All Options Except 080" on page 6-12
A16 A17 A18 A19 A20 A21 A22	Test set motherboard Local oscillator multiplier/amplifier 10 (LOMA 10) Multiplier/amplifier (MA 20) Splitter Local oscillator distribution assembly (LODA) Source multiplier/amplifier 50 (SOMA 50) (E8363B, E8364B only) Switch splitter	"Bottom Assemblies, No Options" on page 6-20

Table 6-1 Location by Reference Designator (Continued)

Reference Designator	Description	Location
$\begin{aligned} & \text { A23 } \\ & \text { A24 } \\ & \text { A25 } \\ & \text { A26 } \\ & \text { A27 } \\ & \text { A28 } \\ & \text { A29 } \\ & \text { A30 } \\ & \text { A31 } \\ & \text { A32 } \\ & \text { A33 } \\ & \text { A34 } \\ & \text { A35 } \end{aligned}$	Channel R1 30-dB attenuator (E8362B only) Channel R2 30-dB attenuator (E8362B only) Channel R1 detector (E8363B, E8364B only) Channel R2 detector (E8363B, E8364B only) Test port 1 coupler Test port 2 coupler Channel A first converter (mixer) Channel R1 first converter (mixer) Channel R2 first converter (mixer) Channel B first converter (mixer) Channel A receiver module Channel R1 receiver module Channel R2 receiver module Channel B receiver module L.O. reject filter board Receiver motherboard	"Bottom Assemblies, No Options" on page 6-20
$\begin{aligned} & \hline \text { A36 } \\ & \text { A37 } \\ & \text { A38 } \\ & \text { A39 } \end{aligned}$	Port $160-\mathrm{dB}$ step attenuator (Option UNL) Port $260-\mathrm{dB}$ step attenuator (Option UNL) Port 1 bias tee (Option UNL) Port 2 bias tee (Option UNL)	"Parts Included with Option UNL" on page 6-30
A40	Floppy disk drive	"Internal Hardware and Parts, All Options" on page 6-52
A41	Hard disk drive assembly	"Hard Disk Drive Assembly" on page 6-56
$\begin{aligned} & \hline \text { A43 } \\ & \text { A44 } \end{aligned}$	$35-\mathrm{dB}$ step attenuator (Option 016) $35-\mathrm{dB}$ step attenuator (Option 016)	"Parts Included with Option UNL, 016" on page 6-34
A45 A46	50 GHz switch (Option 081) 50 GHz switch (Option 081)	"Parts Included with Option 014, 080, 081" on page 6-42

Table 6-2 Part Number Location by Type of Part

Type of Part	Location
Assemblies	- "Front Panel Assembly, All Options" on page 6-10 - "Top Assemblies and Hardware, All Options Except 080" on page 6-12 - "Top Assemblies and Hardware, All Options Including 080" on page 6-16 - "Bottom Assemblies, No Options" on page 6-20 - "Rear Panel Assembly, All Options" on page 6-51
Cables	- "Top Cables, All Options Except 080" on page 6-14 - "Top Cables, All Options Including 080" on page 6-18 - "Bottom RF Cables, No Options" on page 6-22 - "Bottom Flexible Cables, All Options" on page 6-24 - "Bottom Ribbon Cables and Wrapped-Wire, No Options" on page 6-26
Options	- "Parts Included with Option UNL" on page 6-30 - "Parts Included with Option 014 (with or w/o Option 080)" on page 6-32 - "Parts Included with Option UNL, 016" on page 6-34 - "Parts Included with Option UNL, 014 (with or w/o Option 080)" on page 6-36 - "Parts Included with Option UNL, 014, 016 (with or w/o Option 080)" on page 6-39 - "Parts Included with Option 014, 080, 081" on page 6-42 - "Parts Included with Option UNL, 014, 080, 081" on page 6-45 - "Parts Included with Option UNL, 014, 016, 080, 081" on page 6-48

Table 6-2 Part Number Location by Type of Part (Continued)

Type of Part	Location
Hardware	- "Top Assemblies and Hardware, All Options Except 080" on page 6-12 - "Top Assemblies and Hardware, All Options Including 080" on page 6-16 - "Bottom Hardware, No Options" on page 6-28 - "Rear Panel Assembly, All Options" on page 6-51 - "Internal Hardware and Parts, All Options" on page 6-52 - "External Hardware and Parts, All Options" on page 6-54 - "Hard Disk Drive Assembly" on page 6-56
Miscellaneous	- Service Tools on page 6-57 - Fuses on page 6-59 - Documentation on page 6-57 - Protective Caps for Connectors on page 6-57 - GPIB Cables/GPIB Adapter on page 6-57 - ESD Supplies on page 6-58 - E8362B Upgrade Kits on page 6-58 - E8363B, E8364B Upgrade Kits on page 6-58 - Touch-up Paint on page 6-59 - USB Accessories on page 6-59 - Rack Mount Kits and Handle Kits on page 6-59

Front Panel Assembly, All Options

Ref. Desig.	Model	Part Number	Qty	Description
A1	All	E8356-60001	1	Keypad assembly
$\mathrm{A} 2{ }^{\text {a }}$	All	$\begin{aligned} & \text { E8356-60002 } \\ & 0950-3379 \\ & 2090-0386 \\ & 1000-1161 \end{aligned}$	1 1 1 1	Display assembly Inverter board (included in $\mathrm{A} 2^{\text {b }}$) Display lamp for LCD (included in $\mathrm{A} 2^{\mathrm{b}}$) Display glass (included in A2 ${ }^{\text {b }}$)
A3	All	E8356-60029	1	Front panel interface board
RPG	All	E8356-40006	1	Front knob
(1)	All	5041-9183	2	With handles-front handle side trim
	All	5041-9174	2	Without handles-trim strip, filler
(2) ${ }^{\text {c }}$	All	5063-9205	2	Front handle
(3)	All	E8364-80002	1	Front panel overlay, no options
	All		1	Front panel overlay, option UNL or UNL, 016
	All	E8364-80003	1	Front panel overlay, option 014 or 014, 080 or 014, 080, 081
	All	E8364-80011	1	Front panel overlay, option UNL, 014
	All	E8364-80024	1	Front panel overlay, option UNL, 014, 016
	All		1	Front panel overlay, option UNL, 014, 016, 080
	All		1	Front panel overlay, option UNL, 014, 016, 080, 081
(4)	All	E8356-00025	1	Trim strip, filler
(5)	All	0515-1227	2	Machine screw, M3.0 x 6 FL-TX (to attach item (4)
(6)	E8362B	E8362-80003	1	Nameplate
	E8363B	E8363-80002		
	E8364B	E8364-80023		
(7) ${ }^{\text {d }}$	All	E8364-60162	1	Front frame assembly
(8)	All	0515-0375	4	Machine screw, M3.0 x 14 CW-PN-TX
(9)	All	0515-0372	8	Machine screw, M3.0 x 8 CW-PN-TX

a. When ordering a replacement A2 display assembly, you must also order item (6).
b. Although included in the A2 display assembly, each of these parts is also available separately. If one of these parts should have to be replaced, it is not necessary to replace the entire A2 display assembly. For any other parts failures within the display, replace the entire A2 display assembly.
c. For part numbers of complete rack mount kits and handle kits, refer to "Rack Mount Kits and Handle Kits" on page 6-59.
d. When ordering a replacement front frame assembly, you must also order item (3).

Figure 6-2 Front Panel Assembly, All Options

st520a

Top Assemblies and Hardware, All Options Except 080

Reference Designator	Part Number	Qty	Description
A4	$0950-4219$	1	Power supply assembly
A6	E8356-60006	1	Signal processing ADC module (SPAM) board
A8	E8364-60099	1	Fractional-N synthesizer board
A10	E8364-60136	1	Frequency reference board
A11	E8364-60137	1	Phase lock board
A12	E8362-60002 E8362-69002	1	Source 20
A14	E8364-60100	1	System motherboard
A15	E8801-60055	1	500 MHz CPU board
A40	Floppy disk drive	Refer to "Internal Hardware and Parts, All Options"	
B1	Fans		on page 6-52.
(1)	$5022-6134$	1	Cable hold down
(2)	$5022-6135$	1	Cable hold down
(3)	E8356-40001	1	Air flow plenum
(4)	E8356-60202	1	USB hub

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-5.

Figure 6-3 Top Assemblies and Hardware, All Options Except 080

Top Cables, All Options Except 080

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W19	SR	E8364-20027	1	A8 fractional-N synthesizer board J106 to A17 LOMA 10 J2
W20	SR	E8364-20057	1	A8 fractional-N synthesizer board J101 to A17 LOMA 10 J3
W25	F	E8364-60126	1	A6 SPAM board J3 to A31 receiver A J400
W26	F	E8364-60127	1	A6 SPAM board J4 to A32 receiver R1 J400
W27	F	E8364-60128	1	A6 SPAM board J5 to A33 receiver R2 J400
W28	F	E8364-60129	1	A6 SPAM board J6 to A34 receiver B J400
W29	F	E8364-60124	1	A10 frequency reference board J4 to A35 receiver motherboard J2
W30	F	E8364-60125	1	A11 phase lock board J6 to A35 receiver motherboard J50
W31	F	E8356-60052	1	A10 frequency reference board J10 to A8 fractional-N synthesizer board J105
W32	F	E8356-60043	1	A10 frequency reference board J5 to A11 phase lock board J5
W33	F	8120-5055	1	A10 frequency reference board J2 to rear-panel 10 MHz REF. IN
W34		8120-5055	1	A10 frequency reference board J3 to rear-panel 10 MHz REF. OUT
(1)	40R	8121-0116	1	A3 front panel interface board to A14 system motherboard
(2)	6W	8121-0932	1	USB hub to A14 system motherboard

a. $\mathrm{SR}=$ semirigid coaxial cable; $\mathrm{F}=$ flexible coaxial cable; $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable

Figure 6-4 Top Cables, All Options Except 080

st526b

Top Assemblies and Hardware, All Options Including 080

Reference Designator	Part Number	Qty	Description
A4	$0950-4219$	1	Power supply assembly
A6	E8356-60006	1	Signal processing ADC module (SPAM) board
A8	E8364-60099	1	Fractional-N synthesizer board
A9	E8364-60099	1	Fractional-N synthesizer board
A10	E8364-60136	1	Frequency reference board
A11	E8364-60137	1	Phase lock board
A12	E8362-60002 E8362-69002	1	Source 20
A13	E8364-60024	1	Frequency offset receiver assembly
A14	E8364-60100	1	System motherboard
A15	E8801-60055	1	500 MHz CPU board
A40	Floppy disk drive	Refer to "Internal Hardware and Parts, All Options"	
B1	Fans		on page 6-52.
(1)	$5022-6134$	1	Cable hold down
(2)	$5022-6135$	1	Cable hold down
(3)	E8356-40001	1	Air flow plenum
(4)	E8356-60202	1	USB hub

a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-5.

Figure 6-5 Top Assemblies and Hardware, All Options Including 080

Top Cables, All Options Including 080

Reference Designator	Type ${ }^{\text {a }}$	Part Number	Qty	Description
W19	SR	E8364-20027	1	A8 fractional-N synthesizer board J106 to A17 LOMA 10 J2
W20	SR	E8364-20057	1	A8 fractional-N synthesizer board J101 to A17 LOMA 10 J3
W25	F	E8364-60126	1	A6 SPAM board J3 to A31 receiver A J400
W26	F	E8364-60127	1	A6 SPAM board J4 to A32 receiver R1 J400
W27	F	E8364-60128	1	A6 SPAM board J5 to A33 receiver R2 J400
W28	F	E8364-60129	1	A6 SPAM board J6 to A34 receiver B J400
W29	F	E8364-60124	1	A10 frequency reference board J4 to A35 receiver motherboard J2
W30	F	E8364-60125	1	A11 phase lock board J6 to A35 receiver motherboard J50
W31	F	E8356-60052	1	A10 frequency reference board J10 to A8 fractional-N synthesizer board J105
W32	F	E8356-60043	1	A10 frequency reference board J5 to A11 phase lock board J5
W33	F		1	A10 frequency reference board J2 to rear-panel 10 MHz REF. IN
W34	F	8120-5055	1	A10 frequency reference board J3 to rear-panel 10 MHz REF. OUT
W91	SR	E8364-20140	1	A9 fractional-N synthesizer board J106 to A13 frequency offset receiver assembly J4
W92	SR	E8364-20141	1	A9 fractional-N synthesizer board J101 to A13 frequency offset receiver assembly J2
W93	SR	E8364-20143	1	A13 frequency offset receiver assembly RF IN to A12 source 20
W105	F	E8364-60018	1	A10 frequency reference board J11 to A9 fractional-N synthesizer board J105
W106	F	E8364-60017	1	A13 frequency offset receiver assembly J6 to A35 receiver motherboard J502
(1)	40R	8121-0116	1	A3 front panel interface board to A14 system motherboard
(2)	SR	E8364-20142	1	A13 frequency offset receiver assembly J3 to receiver module LO IN (included with A13)
(3)	6W	8121-0932	1	USB hub to A14 system motherboard

a. $\mathrm{SR}=$ semirigid coaxial cable; $\mathrm{F}=$ flexible coaxial cable; $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable

Figure 6-6 Top Cables, All Options Including 080

st567b

Bottom Assemblies, No Options

Ref. Desig.	Models	Part Number ${ }^{\text {a }}$	Qty	Description
A16	All	E8364-60138	1	Test set motherboard
A17	All	$\begin{array}{\|l\|l\|} \hline 5087-7127 \\ 5087-6127 \end{array}$	1	LOMA 10
A18	All	$\begin{array}{\|l\|} \hline 5087-7128 \\ 5087-6128 \end{array}$	1	MA 20
A19	All	5087-7139	1	Splitter
A20	All	$\begin{array}{\|l\|} \hline 5087-7129 \\ 5087-6129 \end{array}$	1	LODA
A21	E8363B, E8364B	$\begin{array}{\|l\|} \hline 5087-7130 \\ 5087-6130 \end{array}$	1	SOMA 50
A22	All	$\begin{array}{\|l\|} \hline 5087-7132 \\ 5087-6132 \end{array}$	1	Switch splitter
$\begin{aligned} & \hline \text { A23 } \\ & \text { A24 } \end{aligned}$	E8363B, E8364B	5087-7133	2	Channel R1 detector Channel R2 detector
A25	E8362B	5086-7968	2	Test port 1 coupler Test port 2 coupler
A26	E8363B, E8364B	5086-7518	2	Test port 1 coupler Test port 2 coupler
$\begin{aligned} & \hline \text { A27 } \\ & \text { A28 } \\ & \text { A29 } \\ & \text { A30 } \end{aligned}$	E8362B	$\begin{array}{\|l\|l\|l\|} 5087-7145 \\ 5087-6145 \end{array}$	4	Channel A first converter (mixer) Channel R1 first converter (mixer) Channel R2 first converter (mixer) Channel B first converter (mixer)
$\begin{aligned} & \text { A27 } \\ & \text { A30 } \end{aligned}$	F8363B, 58364 B	$\begin{array}{\|l\|l\|} \hline 5087-7122 \\ 5087-6122 \end{array}$	2	Channel A first converter (mixer) Channel B first converter (mixer)
$\begin{aligned} & \hline \text { A28 } \\ & \text { A29 } \end{aligned}$	L8363B, E8364B	$\begin{array}{\|l\|l} 5087-7145 \\ 5087-6145 \end{array}$	2	Channel R1 first converter (mixer) Channel R2 first converter (mixer)
$\begin{aligned} & \text { A31 } \\ & \text { A32 } \\ & \text { A33 } \\ & \text { A34 } \end{aligned}$	All	$\begin{array}{\|l} \text { E8364-60134 } \\ \text { E8364-69134 } \end{array}$	4	Channel A receiver module Channel R1 receiver module Channel R2 receiver module Channel B receiver module
A35	All	E8364-60135	1	Receiver motherboard
A41	All	Hard disk drive assembly. Refer to "Hard Disk Drive Assembly" on page 6-56.		
(1)	E8362B	08493-60017	2	30-dB fixed attenuator (pad)
(2)	All	E8364-60139	1	Switch/LO reject filter board

[^6]Figure 6-7 Bottom Assemblies, No Options

Bottom RF Cables, No Options

Ref. Desig.	Models	Part Number	Qty	Description
W1	E8362B	E8362-20002	1	A12 source 20 to A22 switch splitter
	E8363B, E8364B	E8364-20036		A12 source 20 to A21 SOMA 50
W2	E8363B, E8364B	E8364-20034	1	A21 SOMA 50 to A22 switch splitter
W3	E8362B	E8362-20003	1	A22 switch splitter to channel R1 30-dB attenuator
	E8363B, E8364B	E8364-20144	1	A22 switch splitter to A23 detector
W4	E8362B	E8362-20004	1	A22 switch splitter to channel R2 30-dB attenuator
	E8363B, E8364B	E8364-20024	1	A22 switch splitter to A24 detector
W5	All	E8364-20021	1	A22 switch splitter to A25 test port 1 coupler
W6	All	E8364-20022	1	A22 switch splitter to A26 test port 2 coupler
W7	E8362B	E8362-20005	1	Channel R1 attenuator to A28 channel R1 mixer
	E8363B, E8364B	E8364-20025	1	A23 detector to A28 channel R1 mixer
W8	E8362B	E8362-20006	1	Channel R2 attenuator to A29 channel R2 mixer
	E8363B, E8364B	E8364-20026	1	A24 detector to A29 channel R2 mixer
W9	All	E8364-20019	1	A25 test port 1 coupler to A27 channel A mixer
W10	All	E8364-20020	1	A26 test port 2 coupler to A30 channel B mixer
W11	All	E8364-20171	1	A20 LODA to A27 channel A mixer
W12	All	E8364-20172	1	A20 LODA to A28 channel R1 mixer
W13	All	E8364-20173	1	A20 LODA to A29 channel R2 mixer
W14	All	E8364-20146	1	A20 LODA to W40 (to A30 channel B mixer)
W15	All	E8364-20169	1	A19 splitter to A20 LODA
W16	All	E8364-20170	1	A19 splitter to A20 LODA
W17	All	E8364-20029	1	A18 MA 20 to A19 splitter
W18	All	E8364-20145	1	A17 LOMA 10 to A18 MA 20
W19	All	E8364-20027	1	A17 LOMA 10 J2 to A8 fractional-N synthesizer board J105
W20	All	E8364-20057	1	A17 LOMA 10 J3 to A8 fractional-N synthesizer board J101
W40	All	E8364-20032	1	W14 (from A20 LODA) to A30 channel B mixer

Figure 6-8 Bottom RF Cables, No Options

Bottom Flexible Cables, All Options

Ref. Desig	Models	$\begin{gathered} \text { Part } \\ \text { Number } \end{gathered}$	Qty	Description
W21	All	E8364-60019	1	A27 channel A mixer to switch/LO reject filter board
W22	All	E8364-60020	1	A28 channel R1 mixer to switch/LO reject filter board
W23	All	E8364-60021	1	A29 channel R2 mixer to switch/LO reject filter board
W24	All	E8364-60022	1	A30 channel B mixer to switch/LO reject filter board
W25	All	E8364-60126	1	A31 receiver A J400 to A6 SPAM board J3
W26	All	E8364-60127	1	A32 receiver R1 J400 to A6 SPAM board J4
W27	All	E8364-60128	1	A33 receiver R2 J400 to A6 SPAM board J5
W28	All	E8364-60129	1	A34 receiver B J400 to A6 SPAM board J6
W29	All	E8364-60124	1	A10 frequency reference board J4 to A35 receiver motherboard J2
W30	All	E8364-60125	1	A35 receiver motherboard J50 to A11 phase lock board J6
W36	All	E8364-60161	1	A16 test set motherboard to P2 switch/LO reject filter board
W37	$\begin{aligned} & \text { E8363B, } \\ & \text { E8364B } \end{aligned}$	E8364-60121	1	A16 test set motherboard to A23 detector
W38	$\begin{aligned} & \text { E8363B, } \\ & \text { E8364B } \end{aligned}$	E8364-60122	1	A16 test set motherboard to A24 detector
W39	E8363B, E8364B	E8364-60123	1	A16 test set motherboard to A21 SOMA 50
W41	All	8120-5014	1	LO reject filter board to A31 receiver A
W42				LO reject filter board to A32 receiver R1
W43				LO reject filter board to A33 receiver R2
W44				LO reject filter board to A34 receiver B

Figure 6-9 Bottom Flexible Cables, No Options

Bottom Ribbon Cables and Wrapped-Wire, No Options

| Reference
 Designator | Type $^{\mathbf{a}}$ | Part
 Number | Description |
| :---: | :---: | :--- | :--- |$|$| (1) | 50 R | $8121-0817$ | A41 hard disk drive assembly
 to A15 CPU board |
| :---: | :---: | :---: | :---: |
| (2) | 26 R | $8121-0818$ | A16 test set motherboard
 A21 SOMA 50 (E8363B/E8364B only) |
| (3) | 40 R | $8121-0834$ | A16 test set motherboard
 to rear-panel connector |
| (4) | 60 R | $8121-0813$ | A16 test set motherboard
 to A35 receiver motherboard |
| (5) | 24 R | $8121-0815$ | A16 test set motherboard
 to A18 MA 20 |
| (7) | 20 R | $8121-0846$ | A16 test set motherboard
 A17 LOMA 10 |
| (8) | 5 W | $8121-0803$ | A16 test set motherboard
 to A22 switch splitter |
| to A20 LODA | | | |

a. $\mathrm{nW}=\mathrm{n}$ wires in a wrapped cable; $\mathrm{nR}=\mathrm{n}$ wires in a ribbon (flat) cable

Figure 6-10 Bottom Ribbon Cables and Wrapped Wire, No Options

Bottom Hardware, No Options

Reference Designator	Part Number	Qty	Description
(1)	E8364-00002	2	Detector/attenuator/bias tee bracket
(2)	E8364-20115	1	mixer bracket
(3)	E8364-60140	1	mixer bias board
(4)	0515-0430	9	Machine screw M3.0 x 6 CW-PN-TX (Detector brackets-3 ea; front-panel LED board-3)
(5)	0515-0372	2	Machine screw M3.0 x 8 CW-PN-TX (A35-2)
(6)	0515-0374	24	Machine screw M3.0 x 10 CW-PN-TX (A17-4; A18-4; A20-2: A22-2; LO reject filter-8; mixer bracket-4)
(7)	0515-0664	6	Machine screw M3.0 x 12 CW-PN-TX (A19-2; A16-4)
(8)	0515-0666	37	Machine screw M3.0 x 18 CW-PN-TX (A35 casting-13; A20-4; A27-A30-3 ea; A23/A24-4 ea: E8363B/E8364B only)
(9)	0515-1349	16	Machine screw M3.0 x 30 CW-PN-TX (A31-A34-3 ea; A21-4)
(10)	08720-60182	1	Front-panel LED board
(11)	5022-1087	2	Test port coupler nut

Figure 6-11 Bottom Hardware, No Options

Parts Included with Option UNL

Ref. Desig.	Models	Part Number	Qty	Description
$\begin{aligned} & \text { A36 } \\ & \text { A37 } \end{aligned}$	All	33325-60004	2	Step attenuator, $60-\mathrm{dB}$, port 1 (source) Step attenuator, $60-\mathrm{dB}$, port 2 (source)
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \end{aligned}$	E8362B	5086-7239	2	Bias tee with cable, port 1 Bias tee with cable, port 2
	E8363B, E8364B	5087-7233	2	Bias tee with cable, port 1 Bias tee with cable, port 2
W7	E8362B	E8362-20027	1	RF cable: Channel R1 attenuator to A28 channel R1 mixer
	E8363B, E8364B	E8364-20174	1	RF cable: A23 detector to A28 channel R1 mixer
W8	E8362B	E8362-20028	1	RF cable: Channel R2 attenuator to A29 channel R2 mixer
	E8363B, E8364B	E8364-20175	1	RF cable: A24 detector to A29 channel R2 mixer
W51	All	E8364-20055	1	RF cable: A22 switch splitter to A36 step attenuator
W52	All	E8364-20056	1	RF cable: A22 switch splitter to A37 step attenuator
W53	All	E8364-20077	2	RF cable: A36 step attenuator to A38 bias tee
W54				RF cable: A37 step attenuator to A39 bias tee
W55	All	E8364-20167	1	RF cable: A38 bias tee to A25 test port 1 coupler
W56	All	E8364-20168	1	RF cable: A39 bias tee to A26 test port 2 coupler
(1)	All	8121-0819	1	Cable: A36 step attenuator to A16 test set motherboard
(2)	All	8122-0119	1	Cable: A37 step attenuator to A16 test set motherboard
(3)	All	0515-0372	4	$\begin{aligned} & \text { Machine screw M3.0 x } 8 \text { CW-PN-TX } \\ & \text { (A36, A37- } 2 \text { ea) } \end{aligned}$
(4)	All	0515-2141	4	$\begin{aligned} & \text { Machine screw M2.5 x } 14 \text { CW-PN-TX } \\ & \text { (A38, A39- } 2 \text { ea) } \end{aligned}$

Figure 6-12 Parts Included with Option UNL

Parts Included with Option 014 (with or w/o Option 080)

Ref. Desig.	Models	Part Number	Qty	Description
A9, A13	All			Not shown. See "Top Assemblies and Hardware, All Options Including 080" on page 6-16.
W60	E8362B	08720-20098	6	RF cable: Front-panel jumper
	E8363B, E8364B	E8364-20059	6	RF cable: Front-panel jumper
W61	E8362B	E8362-20016	1	RF cable: A22 switch splitter to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20081	1	RF cable: A22 switch splitter to port 1 SOURCE OUT
W62	E8362B	E8362-20017	1	RF cable: A22 switch splitter to port 2 SOURCE OUT
	E8363B, E8364B	E8364-20082	1	RF cable: A22 switch splitter to port 2 SOURCE OUT
W63	E8362B	E8362-20018	1	RF cable: Port 1 CPLR THRU to A25 test port 1 coupler
	E8363B, E8364B	E8364-20073	1	RF cable: Port 1 CPLR THRU to A25 test port 1 coupler
W64	E8362B	E8362-20019	1	RF cable: Port 2 CPLR THRU to A26 test port 2 coupler
	E8363B, E8364B	E8364-20074	1	RF cable: Port 2 CPLR THRU to A26 test port 2 coupler
W65	E8362B	E8362-20007	1	RF cable: Channel R1 attenuator to channel R1 SOURCE OUT
	E8363B, E8364B	E8364-20047	1	RF cable: A23 detector to channel R1 SOURCE OUT
W66	E8362B	E8362-20053	1	RF cable: Channel R2 attenuator to channel R2 SOURCE OUT
	E8363B, E8364B	E8364-20048	1	RF cable: A24 detector to channel R2 SOURCE OUT
W67	E8362B	E8362-20020	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
	E8363B, E8364B	E8364-20043	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
W68	E8362B	E8362-20021	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
	E8363B, E8364B	E8364-20044	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
W69	E8362B	E8362-20022	1	RF cable: A IN to A27 channel A mixer
	E8363B, E8364B	E8364-20045	1	RF cable: A IN to A27 channel A mixer
W70	E8362B	E8362-20029	1	RF cable: R1 IN to A28 channel R1 mixer
	E8363B, E8364B	E8364-20075	1	RF cable: R1 IN to A28 channel R1 mixer
W71	E8362B	E8362-20030	1	RF cable: R2 IN to A29 channel R2 mixer
	E8363B, E8364B	E8364-20076	1	RF cable: R2 IN to A29 channel R2 mixer
W72	E8362B	E8362-20023	1	RF cable: B IN to A30 channel B mixer
	E8363B, E8364B	E8364-20046	1	RF cable: B IN to A30 channel B mixer
W91-93	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
$\begin{aligned} & \text { W105 } \\ & \text { W106 } \end{aligned}$	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.

Figure 6-13 Parts Included with Option 014 (with or w/o Option 080)
Note: Some items removed for clarity.

st575b

Parts Included with Option UNL, 016

Ref. Desig.	Models	Part Number	Qty	Description
$\begin{aligned} & \text { A36 } \\ & \text { A37 } \end{aligned}$	All	33325-60004	2	Step attenuator, $60-\mathrm{dB}$, port 1 (source) Step attenuator, $60-\mathrm{dB}$, port 2 (source)
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \end{aligned}$	E8362B	5086-7239	2	Bias tee with cable, port 1 Bias tee with cable, port 2
	E8363B, E8364B	5087-7233	2	Bias tee with cable, port 1 Bias tee with cable, port 2
$\begin{aligned} & \text { A43 } \\ & \text { A44 } \end{aligned}$	All	33325-60011	2	Step attenuator, $35-\mathrm{dB}$, port 1 (receiver) Step attenuator, $35-\mathrm{dB}$, port 2 (receiver)
W7	E8362B	E8362-20039	1	RF cable: Channel R1 attenuator to A28 channel R1 mixer
	E8363B, E8364B	E8364-20149	1	RF cable: A23 detector to A28 channel R1 mixer
W8	E8362B	E8362-20040	1	RF cable: Channel R2 attenuator to A29 channel R2 mixer
	E8363B, E8364B	E8364-20150	1	RF cable: A24 detector to A29 channel R2 mixer
W45	All	E8364-20147	1	RF cable: A25 test port 1 coupler to A43 channel A step attenuator
W46	All	E8364-20148	1	RF cable: A26 test port 2 coupler to A44 channel B step attenuator
W47	All	E8364-20131	1	RF cable: A43 channel A step attenuator to A27 channel A mixer
W48	All	E8364-20132	1	RF cable: A44 channel B step attenuator to A30 channel B mixer
W51	All	E8364-20055	1	RF cable: A22 switch splitter to A36 step attenuator
W52	All	E8364-20056	1	RF cable: A22 switch splitter to A37 step attenuator
W53	All	E8364-20077	2	RF cable: A36 step attenuator to A38 bias tee
W54				RF cable: A37 step attenuator to A39 bias tee
W55	All	E8364-20167	1	RF cable: A38 bias tee to A25 test port 1 coupler
W56	All	E8364-20168	1	RF cable: A39 bias tee to A26 test port 2 coupler
(1)	All	8121-0819	1	Cable: A36 step attenuator to A16 test set motherboard
(2)	All	8121-0119	1	Cable: A37 step attenuator to A16 test set motherboard
(3)	All	8121-0819	1	Cable: A43 step attenuator to A16 test set motherboard
(4)	All	8121-0819	1	Cable: A44 step attenuator to A16 test set motherboard
(5)	All	0515-0372	8	Machine screw M3.0 x 8 CW-PN-TX (A36, A37, 43, A44- 2 ea)
(6)	All	0515-2141	4	Machine screw M2.5 x 14 CW-PN-TX (A38, A39-2 ea)

Figure 6-14 Parts Included with Option UNL, 016

Parts Included with Option UNL, 014 (with or w/o Option 080)

Ref. Desig.	Models	Part Number	Qty	Description
A9, A13	All			Not shown. See "Top Assemblies and Hardware, All Options Including 080" on page 6-16.
$\begin{aligned} & \text { A36 } \\ & \text { A37 } \end{aligned}$	All	33325-60004	2	Step attenuator, $60-\mathrm{dB}$, port 1 (source) Step attenuator, $60-\mathrm{dB}$, port 2 (source)
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \end{aligned}$	E8362B	5086-7239	2	Bias tee with cable, port 1 Bias tee with cable, port 2
	E8363B, E8364B	5087-7233	2	Bias tee with cable, port 1 Bias tee with cable, port 2
W51	All	E8364-20055	1	RF cable: A22 switch splitter to A36 step attenuator
W52	All	E8364-20056	1	RF cable: A22 switch splitter to A37 step attenuator
W55	All	E8364-20167	1	RF cable: A38 bias tee to A25 test port 1 coupler
W56	All	E8364-20168	1	RF cable: A39 bias tee to A26 test port 2 coupler
W60	E8362B	08720-20098	6	RF cable: Front-panel jumper
	E8363B, E8364B	E8364-20059	6	RF cable: Front-panel jumper
W65	E8362B	E8362-20007	1	RF cable: Channel R1 attenuator to channel R1 SOURCE OUT
	E8363B, E8364B	E8364-20047	1	RF cable: A23 detector to channel R1 SOURCE OUT
W66	E8362B	E8362-20008	1	RF cable: Channel R2 attenuator to channel R2 SOURCE OUT
	E8363B, E8364B	E8364-20048	1	RF cable: A24 detector to channel R2 SOURCE OUT
W67	E8362B	E8362-20020	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
	E8363B, E8364B	E8364-20043	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
W68	E8362B	E8362-20021	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
	E8363B, E8364B	E8364-20044	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
W69	E8362B	E8362-20022	1	RF cable: A IN to A27 channel A mixer
	E8363B, E8364B	E8364-20045	1	RF cable: A IN to A27 channel A mixer
W70	E8362B	E8362-20014	1	RF cable: R1 IN to A28 channel R1 mixer
	E8363B, E8364B	E8364-20176	1	RF cable: R1 IN to A28 channel R1 mixer
W71	E8362B	E8362-20015	1	RF cable: R2 IN to A29 channel R2 mixer
	E8363B, E8364B	E8364-20177	1	RF cable: R2 IN to A29 channel R2 mixer
W72	E8362B	E8362-20023	1	RF cable: B IN to A30 channel B mixer
	E8363B, E8364B	E8364-20046	1	RF cable: B IN to A30 channel B mixer

Parts Included with Option UNL, 014 (with or w/o Option 080) (Continued)

Ref. Desig.	Models	Part Number	Qty	Description
W81	E8362B	E8362-20024	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20053	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20054	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
W83	E8362B	E8362-20012	1	RF cable: Port 1 CPLR THRU to A38 bias tee
	E8363B, E8364B	E8364-20039	1	RF cable: Port 1 CPLR THRU to A38 bias tee
W84	E8362B	E8362-20013	1	RF cable: Port 2 CPLR THRU to A39 bias tee
	E8363B, E8364B	E8364-20040	1	RF cable: Port 2 CPLR THRU to A39 bias tee
W91-93	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
W105 W106	All	All	Not shown. See "Top Cables, All Options Including 080" on page 6-18.	
(1)	All	$8121-0819$	1	Cable: A36 step attenuator to A16 test set motherboard
(2)	All	$8121-0119$	3	Cable: A37 step attenuator to A16 test set motherboard
(3)	All	$0515-0372$	4	Machine screw M3.0 x 8 CW-PN-TX (A36, A37- 2 ea)
(4)	All	$0515-2141$	4	Machine screw M2.5 x 14 CW-PN-TX (A38, A39- 2 ea)

Figure 6-15 Parts Included with Option UNL, 014 (with or w/o Option 080)

Parts Included with Option UNL, 014, 016 (with or w/o Option 080)

Ref. Desig.	Models	Part Number	Qty	Description
A9, A13	All			Not shown. See "Top Assemblies and Hardware, All Options Including 080" on page 6-16.
$\begin{aligned} & \text { A36 } \\ & \text { A37 } \end{aligned}$	All	33325-60004	2	Step attenuator, $60-\mathrm{dB}$, port 1 (source) Step attenuator, $60-\mathrm{dB}$, port 2 (source)
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \end{aligned}$	E8362B	5086-7239	2	Bias tee with cable, port 1 Bias tee with cable, port 2
	E8363B, E8364B	5087-7233	2	Bias tee with cable, port 1 Bias tee with cable, port 2
$\begin{aligned} & \mathrm{A} 43 \\ & \mathrm{~A} 44 \end{aligned}$	All	33325-60011	2	Step attenuator, $35-\mathrm{dB}$, port 1 (receiver) Step attenuator, $35-\mathrm{dB}$, port 2 (receiver)
W47	All	E8364-20131	1	RF cable: A43 channel A step attenuator to A27 channel A mixer
W48	All	E8364-20132	1	RF cable: A44 channel B step attenuator to A30 channel B mixer
W49	E8362B	E8362-20035	1	RF cable: A IN to A43 channel A step attenuator
	E8363B, E8364B	E8364-20129	1	RF cable: A IN to A43 channel A step attenuator
W50	E8362B	E8362-20036	1	RF cable: B IN to A44 channel B step attenuator
	E8363B, E8364B	E8364-20130	1	RF cable: B IN to A44 channel B step attenuator
W51	All	E8364-20055	1	RF cable: A22 switch splitter to A36 step attenuator
W52	All	E8364-20056	1	RF cable: A22 switch splitter to A37 step attenuator
W55	All	E8364-20167	1	RF cable: A38 bias tee to A25 test port 1 coupler
W56	All	E8364-20168	1	RF cable: A39 bias tee to A26 test port 2 coupler
W60	E8362B	08720-20098	6	RF cable: Front-panel jumper
	E8363B, E8364B	E8364-20059	6	RF cable: Front-panel jumper
W65	E8362B	E8362-20007	1	RF cable: Channel R1 attenuator to channel R1 SOURCE OUT
	E8363B, E8364B	E8364-20047	1	RF cable: A23 detector to channel R1 SOURCE OUT
W66	E8362B	E8362-20053	1	RF cable: Channel R2 attenuator to channel R2 SOURCE OUT
	E8363B, E8364B	E8364-20048	1	RF cable: A24 detector to channel R2 SOURCE OUT
W67	E8362B	E8362-20020	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
	E8363B, E8364B	E8364-20043	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
W68	E8362B	E8362-20021	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
	E8363B, E8364B	E8364-20044	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM

Parts Included with Option UNL, 014, 016 (with or w/o Option 080) (Continued)

Ref. Desig.	Models	Part Number	Qty	Description
W70	E8362B	E8362-20041	1	RF cable: R1 IN to A28 channel R1 mixer
	E8363B, E8364B	E8364-20151	1	RF cable: R1 IN to A28 channel R1 mixer
W71	E8362B	E8362-20038	1	RF cable: R2 IN to A29 channel R2 mixer
	E8363B, E8364B	E8364-20126	1	RF cable: R2 IN to A29 channel R2 mixer
W81	E8362B	E8362-20024	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20053	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
W82	E8362B	E8362-20025	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
	E8363B, E8364B	E8364-20054	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
W83	E8362B	E8362-20012	1	RF cable: Port 1 CPLR THRU to A38 bias tee
	E8363B, E8364B	E8364-20039	1	RF cable: Port 1 CPLR THRU to A38 bias tee
W84	E8362B	E8362-20013	1	RF cable: Port 2 CPLR THRU to A39 bias tee
	E8363B, E8364B	E8364-20040	1	RF cable: Port 2 CPLR THRU to A39 bias tee
W91-93	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
$\begin{aligned} & \text { W105 } \\ & \text { W106 } \end{aligned}$	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
(1)	All	8121-0819	1	Cable: A36 step attenuator to A16 test set motherboard
(2)	All	8121-0119	1	Cable: A37 step attenuator to A16 test set motherboard
(3)	All	8121-0819	1	Cable: A43 step attenuator to A16 test set motherboard
(4)	All	8121-0819	1	Cable: A44 step attenuator to A16 test set motherboard
(5)	All	0515-0372	8	Machine screw M3.0 x 8 CW-PN-TX (A36, A37, 43, A44- 2 ea)
(6)	All	0515-2141	4	$\begin{aligned} & \text { Machine screw M2.5 x } 14 \text { CW-PN-TX } \\ & \text { (A38, A39- } 2 \text { ea) } \end{aligned}$

Figure 6-16 Parts Included with Option UNL, 014, 016 (with or w/o Option 080)

Parts Included with Option 014, 080, 081

Ref. Desig.	Models	Part Number	Qty	Description
A9, A13	All			Not shown. See "Top Assemblies and Hardware, All Options Including 080" on page 6-16.
A23	E8363B, E8364B	5087-7242	1	Channel R1 detector
$\begin{aligned} & \mathrm{A} 45 \\ & \mathrm{~A} 46 \end{aligned}$	All	5087-7238	2	50 GHz reference transfer switch
W60	E8362B	08720-20098	6	RF cable: Front-panel jumper
	E8363B, E8364B	E8364-20059	6	RF cable: Front-panel jumper
W61	E8362B	E8362-20016	1	RF cable: A22 switch splitter to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20081	1	RF cable: A22 switch splitter to port 1 SOURCE OUT
W62	E8362B	E8362-20017	1	RF cable: A22 switch splitter to port 2 SOURCE OUT
	E8363B, E8364B	E8364-20082	1	RF cable: A22 switch splitter to port 2 SOURCE OUT
W63	E8362B	E8362-20018	1	RF cable: Port 1 CPLR THRU to A25 test port 1 coupler
	E8363B, E8364B	E8364-20073	1	RF cable: Port 1 CPLR THRU to A25 test port 1 coupler
W64	E8362B	E8362-20019	1	RF cable: Port 2 CPLR THRU to A26 test port 2 coupler
	E8363B, E8364B	E8364-20074	1	RF cable: Port 2 CPLR THRU to A26 test port 2 coupler
W66	E8362B	E8362-20053	1	RF cable: Channel R2 attenuator to channel R2 SOURCE OUT
	E8363B, E8364B	E8364-20048	1	RF cable: A24 detector to channel R2 SOURCE OUT
W67	E8362B	E8362-20051	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
	E8363B, E8364B	E8364-20156	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
W68	E8362B	E8362-20052	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
	E8363B, E8364B	E8364-20157	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
W69	E8362B	E8362-20022	1	RF cable: A IN to A27 channel A mixer
	E8363B, E8364B	E8364-20045	1	RF cable: A IN to A27 channel A mixer
W71	E8362B	E8362-20044	1	R2 IN to A29 channel R2 mixer
	E8363B, E8364B	E8364-20153	1	R2 IN to A29 channel R2 mixer

Parts Included with Option 014, 080, 081 (Continued)

Ref. Desig.	Models	Part Number	Qty	Description
W72	E8362B	E8362-20023	1	B IN to A30 channel B mixer
	E8363B, E8364B	E8364-20046	1	B IN to A30 channel B mixer
W91-93	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
W95	E8362B	E8362-20032	1	A46 reference switch to channel R1 attenuator
	E8363B, E8364B	E8364-20119	1	A46 reference switch to A23 detector
W96	All	E8364-20127	1	RF cables: A45 reference switch to A46 reference switch
W97	E8362B	E8362-20033	1	RF cables: A46 reference switch to REF SOURCE OUT
	E8363B, E8364B	E8364-20121	1	RF cables: A46 reference switch to REF SOURCE OUT
W98	E8362B	E8362-20034	1	RF cables: A45 reference switch to REF R1 IN
	E8363B, E8364B	E8364-20123	1	RF cables: A45 reference switch to REF R1 IN
W99	E8362B	E8362-20043	1	RF cables: A45 reference switch to A28 R1 mixer
	E8363B, E8364B	E8364-20152	1	RF cables: A45 reference switch to A28 R1 mixer
$\begin{aligned} & \text { W105 } \\ & \text { W106 } \end{aligned}$	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
(1)	All	8121-0966	1	Cable: A45 reference switch to A16 test set motherboard
(2)	All	8121-0966	1	Cable: A46 reference switch to A16 test set motherboard
(3)	All	0515-0430	2	Machine screw M3.0 x 6 CW-PN-TX (Bracket, item (5)- 2 ea)
(4)	All	0515-0664	8	Machine screw M3.0 x 12 CW-PN-TX (A45-4 ea, A46-4 ea)
(5)	All	E8364-00012	1	Bracket, A45 reference switch

Figure 6-17 Parts Included with Option 014, 080, 081
Note: Some items removed for clarity.

(E8362B)

st580b

Parts Included with Option UNL, 014, 080, 081

Ref. Desig.	Models	Part Number	Qty	Description
A9, A13	All			Not shown. See "Top Assemblies and Hardware, All Options Including 080" on page 6-16.
A23	E8363B, E8364B	5087-7242	1	Channel R1 detector
A36 A37	All	33325-60004	2	Step attenuator, $60-\mathrm{dB}$, port 1 (source) Step attenuator, $60-\mathrm{dB}$, port 2 (source)
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \end{aligned}$	E8362B	5086-7239	2	Bias tee with cable, port 1 Bias tee with cable, port 2
	E8363B, E8364B	5087-7233	2	Bias tee with cable, port 1 Bias tee with cable, port 2
$\begin{aligned} & \text { A45 } \\ & \text { A46 } \end{aligned}$	All	5087-7238	2	50 GHz reference switch
W51	All	E8364-20055	1	RF cable: A22 switch splitter to A36 step attenuator
W52	All	E8364-20056	1	RF cable: A22 switch splitter to A37 step attenuator
W55	All	E8364-20167	1	RF cable: A38 bias tee to A25 test port 1 coupler
W56	All	E8364-20168	1	RF cable: A39 bias tee to A26 test port 2 coupler
W60	E8362B	08720-20098	6	RF cable: Front-panel jumper
	E8363B, E8364B	E8364-20059	6	RF cable: Front-panel jumper
W66	E8362B	E8362-20053	1	RF cable: Channel R2 attenuator to channel R2 SOURCE OUT
	E8363B, E8364B	E8364-20048	1	RF cable: A24 detector to channel R2 SOURCE OUT
W67	E8362B	E8362-20020	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
	E8363B, E8364B	E8364-20043	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
W68	E8362B	E8362-20021	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
	E8363B, E8364B	E8364-20044	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
W69	E8362B	E8362-20022	1	RF cable: A IN to A27 channel A mixer
	E8363B, E8364B	E8364-20045	1	RF cable: A IN to A27 channel A mixer
W71	E8362B	E8362-20046	1	RF cable: R2 IN to A29 channel R2 mixer
	E8363B, E8364B	E8364-20155	1	RF cable: R2 IN to A29 channel R2 mixer
W72	E8362B	E8362-20023	1	RF cable: B IN to A30 channel B mixer
	E8363B, E8364B	E8364-20046	1	RF cable: B IN to A30 channel B mixer
W81	E8362B	E8362-20024	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20053	1	RF cable: A36 step attenuator to port 1 SOURCE OUT

Parts Included with Option UNL, 014, 080, 081 (Continued)

Ref. Desig.	Models	Part Number	Qty	Description
W82	E8362B	E8362-20025	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
	E8363B, E8364B	E8364-20054	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
W83	E8362B	E8362-20012	1	RF cable: Port 1 CPLR THRU to A38 bias tee
	E8363B, E8364B	E8364-20039	1	RF cable: Port 1 CPLR THRU to A38 bias tee
W84	E8362B	E8362-20013	1	RF cable: Port 2 CPLR THRU to A39 bias tee
	E8363B, E8364B	E8364-20040	1	RF cable: Port 2 CPLR THRU to A39 bias tee
W91-93	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
W95	E8362B	E8362-20032	1	RF cable: A46 reference switch to channel R1 attenuator
	E8363B, E8364B	E8364-20119	1	RF cable: A46 reference switch to A23 detector
W96	All	E8364-20127	1	RF cable: A45 reference switch to A46 reference switch
W97	E8362B	E8362-20033	1	RF cable: A46 reference switch to REF SOURCE OUT
	E8363B, E8364B	E8364-20121	1	RF cable: A46 reference switch to REF SOURCE OUT
W98	E8362B	E8362-20034	1	RF cable: A45 reference switch to REF R1 IN
	E8363B, E8364B	E8364-20123	1	RF cable: A45 reference switch to REF R1 IN
W99	E8362B	E8362-20045	1	RF cable: A45 reference switch to A28 R1 mixer
	E8363B, E8364B	E8364-20154	1	RF cable: A45 reference switch to A28 R1 mixer
$\begin{aligned} & \text { W105 } \\ & \text { W106 } \end{aligned}$	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
(1)	All	8121-0819	1	Cable: A36 step attenuator to A16 test set motherboard
(2)	All	8121-0119	1	Cable: A37 step attenuator to A16 test set motherboard
(3)	All	8121-0966	1	Cable: A45 reference switch to A16 test set motherboard
(4)	All	8121-0966	1	Cable: A46 reference switch to A16 test set motherboard
(5)	All	0515-0430	2	Machine screw M3.0 x 6 CW-PN-TX (Bracket, item (7)- 2 ea)
(6)	All	0515-0664	8	Machine screw M3.0 x 12 CW-PN-TX (A45-4 ea, A46-4 ea)
(7)	All	E8364-00012	1	Bracket, A45 reference switch

Figure 6-18 Parts Included with Option UNL, 014, 080, 081
Note: Some items removed for clarity.

(E8362B)

Detail B

st581b

Parts Included with Option UNL, 014, 016, 080, 081

Ref. Desig.	Models	Part Number	Qty	Description
A9, A13	All			Not shown. See "Top Assemblies and Hardware, All Options Including 080" on page 6-16.
A23	E8363B, E8364B	5087-7242	1	Channel R1 detector
$\begin{aligned} & \text { A36 } \\ & \text { A37 } \end{aligned}$	All	33325-60004	2	Step attenuator (source), $60-\mathrm{dB}$, port 1 Step attenuator (source), $60-\mathrm{dB}$, port 2
$\begin{aligned} & \text { A38 } \\ & \text { A39 } \end{aligned}$	E8362B	5086-7239	2	Bias tee with cable, port 1 Bias tee with cable, port 2
	E8363B, E8364B	5087-7233	2	Bias tee with cable, port 1 Bias tee with cable, port 2
$\begin{aligned} & \mathrm{A} 43 \\ & \mathrm{~A} 44 \end{aligned}$	All	33325-60011	2	Step attenuator (receiver), $35-\mathrm{dB}$, port 1 Step attenuator (receiver), $35-\mathrm{dB}$, port 2
A45, A46	All	5087-7238	2	50 GHz reference switch
W47	All	E8364-20131	1	RF cable: A43 channel A step attenuator to A27 channel A mixer
W48	All	E8364-20132	1	RF cable: A44 channel B step attenuator to A30 channel B mixer
W49	E8362B	E8362-20035	1	RF cable: A IN to A43 channel A step attenuator
	E8363B, E8364B	E8364-20129	1	RF cable: A IN to A43 channel A step attenuator
W50	E8362B	E8362-20036	1	RF cable: B IN to A44 channel B step attenuator
	E8363B, E8364B	E8364-20130	1	RF cable: B IN to A44 channel B step attenuator
W51	All	E8364-20055	1	RF cable: A22 switch splitter to A36 step attenuator
W52	All	E8364-20056	1	RF cable: A22 switch splitter to A37 step attenuator
W55	All	E8364-20167	1	RF cable: A38 bias tee to A25 test port 1 coupler
W56	All	E8364-20168	1	RF cable: A39 bias tee to A26 test port 2 coupler
W60	E8362B	08720-20098	6	RF cable: Front-panel jumper
	E8363B, E8364B	E8364-20059	6	RF cable: Front-panel jumper
W66	E8362B	E8362-20053	1	RF cable: Channel R2 attenuator to channel R2 SOURCE OUT
	E8363B, E8364B	E8364-20048	1	RF cable: A24 detector to channel R2 SOURCE OUT
W67	E8362B	E8362-20051	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
	E8363B, E8364B	E8364-20156	1	RF cable: A25 test port 1 coupler to Port 1 CPLR ARM
W68	E8362B	E8362-20052	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
	E8363B, E8364B	E8364-20157	1	RF cable: A26 test port 2 coupler to Port 2 CPLR ARM
W71	E8362B	E8362-20038	1	RF cable: R2 IN to A29 channel R2 mixer
	E8363B, E8364B	E8364-20126	1	RF cable: R2 IN to A29 channel R2 mixer

Parts Included with Option UNL, 014, 016, 080, 081 (Continued)

Ref. Desig.	Models	Part Number	Qty	Description
W81	E8362B	E8362-20024	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
	E8363B, E8364B	E8364-20053	1	RF cable: A36 step attenuator to port 1 SOURCE OUT
W82	E8362B	E8362-20025	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
	E8363B, E8364B	E8364-20054	1	RF cable: A37 step attenuator to port 2 SOURCE OUT
W83	E8362B	E8362-20012	1	RF cable: Port 1 CPLR THRU to A38 bias tee
	E8363B, E8364B	E8364-20039	1	RF cable: Port 1 CPLR THRU to A38 bias tee
W84	E8362B	E8362-20013	1	RF cable: Port 2 CPLR THRU to A39 bias tee
	E8363B, E8364B	E8364-20040	1	RF cable: Port 2 CPLR THRU to A39 bias tee
W91-93	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
W95	E8362B	E8362-20032	1	RF cable: A46 reference switch to channel R1 attenuator
	E8363B, E8364B	E8364-20119	1	RF cable: A46 reference switch to A23 detector
W96	All	E8364-20127	1	RF cable: A45 reference switch to A46 reference switch
W97	E8362B	E8362-20033	1	RF cable: A46 reference switch to REF SOURCE OUT
	E8363B, E8364B	E8364-20121	1	RF cable: A46 reference switch to REF SOURCE OUT
W98	E8362B	E8362-20034	1	RF cable: A45 reference switch to REF R1 IN
	E8363B, E8364B	E8364-20123	1	RF cable: A45 reference switch to REF R1 IN
W99	E8362B	E8362-20037	1	RF cable: A45 reference switch to A28 R1 mixer
	E8363B, E8364B	E8364-20125	1	RF cable: A45 reference switch to A28 R1 mixer
$\begin{aligned} & \text { W105 } \\ & \text { W106 } \end{aligned}$	All			Not shown. See "Top Cables, All Options Including 080" on page 6-18.
(1)	All	8121-0819	1	Cable: A36 step attenuator to A16 test set motherboard
(2)	All	8121-0119	3	Cable: A37 step attenuator to A16 test set motherboard
(3)	All	8121-0819	3	Cable: A43 step attenuator to A16 test set motherboard
(4)	All	8121-0819	3	Cable: A44 step attenuator to A16 test set motherboard
(5)	All	8121-0966	2	Cable: A45 reference switch to A16 test set motherboard
(6)	All	8121-0966	2	Cable: A46 reference switch to A16 test set motherboard
(7)	All	E8364-00012	1	Bracket, A45 reference switch
(8)	All	0515-0430	2	Machine screw M3.0 x 6 CW-PN-TX (Bracket, item (7)-2 ea)
(9)	All	0515-0372	8	Machine screw M3.0 x 8 CW-PN-TX (A36, A37, A43, A44- 2 ea)
(10)	All	0515-0664	8	Machine screw M3.0 x 12 CW-PN-TX (A45-4 ea, A46-4 ea)
(11)	All	0515-2141	4	$\begin{aligned} & \text { Machine screw M2.5 x } 14 \text { CW-PN-TX } \\ & \text { (A38, A39- } 2 \text { ea) } \end{aligned}$

Figure 6-19 Parts Included with Option UNL, 014, 016, 080, 081

Rear Panel Assembly, All Options

Item Number	Part Number	Qty	Description
(1)	E8356-00023	1	Cover plate, large
(2)	E8364-20117	1	Rear frame
(3)	$0515-0372$	20	Machine screw, M3.0 x 8, CW-PN-TX
(4)	$8120-5055$	2	BNC cable assembly
(5)	$2950-0035$	2	Hex nut for BNC connector
(6)	$2190-0102$	2	Lock washer for BNC connector
(7)	E8356-60202	1	USB hub, 4 ports
(8)	E8364-00009	1	Cover, bias connectors and fuse holders
	E8364-60095	1	Hard disk drive stationary board (not shown)
	E8364-00007	1	Hard disk drive stationary bracket (not shown)

Figure 6-20 Rear Panel Assembly, All Options

Internal Hardware and Parts, All Options

Reference Designator	Models	Part Number	Qty	Description
A40	All	0950-2782 $8121-0120$ E4406-60014 E4406-40006 E8356-00007	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Floppy disk drive Cable Floppy disk drive board Floppy disk drive mount Floppy disk drive enclosure
B1	All	3160-1085	3	Fan
(1)	All	E8356-00027	1	Chassis assembly
(2)	All	E8364-00013	1	Test set deck
(3)	E8362B	E8362-00002	1	Test set deck front panel
	E8363B, E8364B	E8364-00014		
(4)	All	These feed-through connectors, including the nuts and washers, are part of the individual cables. Refer to the appropriate bottom RF cables illustration in this chapter to determine the part number of the cable assembly.		
(5)	All	E8356-40004	1	Line switch button
(6)	All	1460-2632	1	Line switch spring
(7)	All	E4406-60109	1	Midweb assembly (includes three fans)

Figure 6-21 Internal Hardware and Parts, All Options

External Hardware and Parts, All Options

Reference Designator	Part Number	Qty	Description
(1)	E8356-00025	1	Trim strip, filler
(2)	E8356-00011	1	Inner cover
(3)	E8364-00003	1	Outer cover
(4)	$5041-9611$	4	Rear feet
(5)	$0515-1619$	4	Machine screw M4.0 x 25 PNTX
(6)	E4400-60026	2	Strap handle assembly (includes item (7)
(7)	$0515-0710$	4	Machine screw M5.0 x 18 FLTX
(8)	$5041-9167$	4	Bottom feet
(9)	$5041-9183$	2	With handles-front handle side trim
(3)	$5041-9174$	2	Without handles-trim strip, filler
(10)	$5063-9205$	2	Front handle

Figure 6-22 External Hardware and Parts, All Options

st534a

Hard Disk Drive Assembly

Reference Designator	Part Number	Qty	Description
A41	E8801-60063	1	Programmed hard disk drive
(1)	E8364-20118	1	Hard disk drive bracket
(2)	$0515-0664$	4	Machine screw, M3.0 x 12 CW-PN-TX
(3)	$0515-0372$	2	Machine screw, M3.0 x 8 CW-PN-TX
(4)	$0340-1525$	8	Bushing
(5)	E8364-60094	1	Hard disk drive board
Not shown	$1440-0421$	1	U-handle, finger grip
Not shown	$0515-1227$	2	Machine screw, M3.0 x 6 FL-TX (for U-handle)

Figure 6-23 Hard Disk Drive Assembly

Miscellaneous Part Numbers

Description	Model or Part Number
Service Tools	
Extender board, synthesizer/reference	E8356-60021
T-8 TORX driver (set to 5 in-lb)	N/A
T-10 TORX driver (set to 9 in-lb)	N/A
T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)	N/A
5/16-in, open-end torque wrench (set to $10 \mathrm{in}-\mathrm{lb}$)	N/A
1/4-in to $5 / 16$-in open-ended wrench	N/A
Documentation	
Installation and Quick Start Guide (for all PNA series analyzers)	E8356-90001
Service Guide (this manual)	E8364-90026
CD-ROM (Includes the following:) Installation and Quick Start Guide in PDF format Service Guide in PDF format Embedded Help in PDF format Embedded Help program to run on a PC	E8356-10001
Protective Caps for Connectors	
Protective cap for GPIB connector	1252-5007
Protective cap for Test Set I/O connector	1252-4690
Protective cap for Aux I/O connector	1252-4691
Protective cap for Handler I/O connector	1253-5320
Protective cap for Display (VGA) connector	1252-4696
Protective cap for Serial (RS-232) connector	1252-4697
Protective cap for Parallel (1284-C) connector	1252-4690
Protective cap for Test port (Port 1, Port 2) connector (E8362B)	1401-0249
Protective cap for Test port (Port 1, Port 2) connector (E8363B, E8364B)	1401-0247
GPIB Cables/GPIB Adapter	
GPIB cable, 0.5 meter (1.6 feet)	10833D
GPIB cable, 1 meter (3.3 feet)	10833A
GPIB cable, 2 meter (6.6 feet)	10833B
GPIB cable, 4 meter (13.2 feet)	10833C
GPIB cable to GPIB cable adapter	10834A

Description	Model or Part Number
ESD Supplies	
Adjustable antistatic wrist strap	9300-1367
Antistatic wrist strap grounding cord (5 foot length)	9300-0980
Static control table mat and earth ground wire	9300-0797
ESD heel strap	9300-1126
E8362B Upgrade Kits	
Time domain (Option 010)	E8356-60101
Firmware upgrade on CD-ROM (Option 099)	E8356-60103
Configurable test set (Option 014)	E8362-60106
Receiver attenuators (Option 016)	E8362-60107
Ram upgrade to 512 MB (Option 022)	E8362-60108
Extended frequency range to 40 GHz (for models w/o option 014) (Option 040)	E8362-60109
Extended frequency range to 40 GHz (for models with option 014) (Option 041)	E8362-60110
Frequency offset mode (Option 080)	E8362-60111
Reference mixer transfer switches (Option 081)	E8362-60112
$60-\mathrm{dB}$ source attenuators and bias tees (Option UNL)	E8362-60115
Mixer measurement application (Option 083)	E8362-60114
E8363B, E8364B Upgrade Kits	
Time domain (Option 010)	E8356-60101
Firmware upgrade on CD-ROM (Option 099)	E8356-60103
Ram upgrade to 512 MB (Option 022)	E8362-60108
Frequency offset mode (Option 080)	E8362-60111
Mixer measurement application (Option 083)	E8362-60114
Extended frequency range to 50 GHz (E8363B), (Option 050)	E8363-60101
Configurable test set (Option 014)	E8364-60103
Receiver attenuators (Option 016)	E8364-60104
Extended frequency range to 67 GHz (for models w/o option 014) (Option 067)	E8364-60105
Extended frequency range to 67 GHz (for models with option 014) (Option 068)	E8364-60106
Reference mixer transfer switches (Option 081)	E8364-60107
$60-\mathrm{dB}$ source attenuators and bias tees (Option UNL)	E8364-60108

Miscellaneous Part Numbers (Continued)

Description	Model or Part Number
Touch-up Paint	
Dove gray (for use on frame around front panel and painted portion of handles)	6010-1146
French gray (for use on cover)	6010-1147
Parchment white (for use on rack mount flanges, rack support flanges, and front panels)	6010-1148
USB Accessories	
Mouse	1150-7799
Keyboard	1150-7896
Read/write CD-ROM	N4688A
Hub	N4689A
Rack Mount Kits and Handle Kits	
Rack mount kit for instruments with handles (Option 1CP)	5063-9237
Rack mount flange for use with handles (two included in 5063-9237)	5022-2809
Rack mount kit for instruments without handles (Option 1CM)	5063-9217
Rack mount flange for use without handles (two included in 5063-9217)	5022-2802
Front handle kit (two handles and hardware)	5063-9230
Front handle (two included in 5063-9230)	5063-9205
Rack mount rail set	E3663AC
EMI Shielding Accessories	
5 mm ferrite bead for probe power	9170-2047
7 mm ferrite bead for serial cable	9170-1793
9 mm ferrite bead (spare for parallel port)	9170-1702
Fuses	
Rear Panel Bias Input Fuse Port 1, Port 2 (0.5 A, 125 V) (Option UNL)	2110-0046

7 Repair and Replacement Procedures

Information in This Chapter

This chapter contains procedures for removing and replacing the major assemblies of your Agilent Technologies PNA series microwave network analyzer.

Chapter Seven at-a-Glance

Section Title	Summary of Content	Start Page
Before Starting the Removal and Replacement Procedures	Warnings and cautions pertaining to personal safety and ESD protection. The proper assembly replacement sequence for your analyzer.	Page 7-3
Table of Removal and Replacement Procedures	A table of removal and replacement procedures and the corresponding page number where they are located.	Page 7-4
Removal and Replacement Procedures	The actual procedures for removing and replacing the major assemblies in your analyzer. The procedures occur in assembly reference designator numerical order.	See Table 7-1 on page 7-4 for specific procedures.
Post-Repair Procedures	A table for the proper tests, verifications, and adjustments to perform on your analyzer after repair.	Page 7-75

Before Starting the Removal and Replacement Procedures

Before starting the removal and replacement procedures, review these warnings, cautions, and the assembly replacement sequence.

Personal Safety Warnings

WARNING These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

WARNING The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the analyzer from all voltage sources while it is being opened.

WARNING The power cord is connected to internal capacitors that may remain live for 10 seconds after disconnecting the plug from its power supply assembly. Wait at least 10 seconds, after disconnecting the plug, before removing the covers.

Electrostatic Discharge (ESD) Protection

CAUTION Many of the assemblies in this instrument are very susceptible to damage from electrostatic discharge (ESD). Perform the following procedures only at a static-safe workstation and wear a grounded wrist strap.
This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.
To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page $1-5$, for all of the procedures in this chapter.

Assembly Replacement Sequence

The following steps show the sequence that you should follow to replace an assembly in the network analyzer.
Step 1. Identify the faulty group. Begin with Chapter 4, "Troubleshooting."
Step 2. Order a replacement assembly. Refer to Chapter 6, "Replaceable Parts."
Step 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to this chapter.

Step 4. Perform the necessary adjustments. Refer to Chapter 3, "Tests and Adjustments."
Step 5. Perform the necessary performance tests. Refer to Chapter 3, "Tests and Adjustments."

Removal and Replacement Procedures

Table 7-1 List of Procedures

Reference Designator	Assembly Type	Location
N/A	Covers, outer and inner	Page 7-6
N/A	Receiver deck	Page 7-8
N/A	L.O. reject filter board (part of A31, A32, A33, A34 procedure)	Page 7-52
N/A	Midweb and fans	Page 7-72
N/A	Front panel assembly	Page 7-10
N/A	30-dB fixed attenuators (E8362B only)	Page 7-44
N/A	Mixer bias board (part of A27, A28, A29, A30 procedure)	Page 7-50
A1	Keypad assembly	
A2	Display assembly	Page 7-12
A3	Front panel interface board	
A4	Power supply assembly	Page 7-16
A6	SPAM board	
A8	Fractional-N synthesizer board	Page 7-18
A9	Fractional-N synthesizer board (Option 080)	
A10	Frequency reference board	
A11	Phase lock board	Page 7-20
A12	Source 20	Page 7-22
A13	Frequency offset receiver board	Page 7-24
A14	System motherboard	Page 7-26
A15	CPU board	Page 7-28
A16	Test set motherboard	Page 7-30
A17	LOMA 10	Page 7-32
A18	MA 20	Page 7-34
A19	Splitter	Page 7-36

Table 7-1 List of Procedures

Reference Designator	Assembly Type	Location
A20	LODA	Page 7-38
A21	SOMA 50 (E8363B and E8364B only)	Page 7-40
A22	Switch splitter	Page 7-42
A23 A24	Detector (E8363B and E8364B only) Detector (E8363B and E8364B only)	Page 7-46
$\begin{aligned} & \text { A25 } \\ & \text { A26 } \end{aligned}$	Test port 1 coupler Test port 2 coupler	Page 7-48
A27	Channel A first converter (mixer)	
A28	Channel R1 first converter (mixer)	
A29	Channel R2 first converter (mixer)	
A30	Channel B first converter (mixer)	
A31	Channel A receiver module	
A32	Channel R1 receiver module	
A33	Channel R2 receiver module	
A34	Channel B receiver module	
A35	Receiver motherboard	Page 7-54
A36	Port $160-\mathrm{dB}$ source step attenuator (Option UNL)	
A37	Port $260-\mathrm{dB}$ source step attenuator (Option UNL)	7.5
A38	Port 1 bias tee (Option UNL)	
A39	Port 2 bias tee (Option UNL)	
A40	Floppy disk drive	Page 7-60
A41	Hard disk drive	Page 7-62
$\begin{aligned} & \mathrm{A} 43 \\ & \mathrm{~A} 44 \end{aligned}$	Channel A $35-\mathrm{dB}$ receiver step attenuator (Option 016) Channel B $35-\mathrm{dB}$ receiver step attenuator (Option 016)	Page 7-68
A45 A46	Channel R1 reference channel transfer switch (Option 081) Channel R1 reference channel transfer switch (Option 081)	Page 7-70

Removing the Covers

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)

Removing the Outer Cover

CAUTION This procedure is best performed with the analyzer resting on its front handles in the vertical position. Do not place the analyzer on its front panel without the handles. This will damage the front panel assemblies.

Refer to Figure 7-1 for this procedure.

1. Disconnect the power cord.
2. With a T-20 TORX driver, remove the strap handles (item (1)) by loosening the screws (item (2)) on both ends until the handle is free of the analyzer.
3. With a T-20 TORX driver, remove the four rear panel feet (item (3) by removing the center screws (item (4).
4. Slide the four bottom feet (item (5) off the cover.
5. Slide the cover off of the frame.

Removing the Inner Cover

Refer to Figure 7-1 for this procedure.

1. With a T-10 TORX driver, remove the 11 screws (item (6).
2. Lift off the cover.

Replacement Procedure

Reverse the order of the removal procedures.

Figure 7-1 Outer and Inner Cover Removal

Raising and Removing the Receiver Deck

Tools Required

- T-10 TORX driver (set to 9 in-lb)

Raising the Receiver Deck

Refer to Figure 7-2 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover.
3. Place the analyzer bottom-side up on a flat surface.
4. With a T-10 TORX driver, remove the four screws (item (1)), securing the receiver deck.
5. Pull the latch pin (item (2)) toward the center of the analyzer to release receiver deck.
6. Lift the receiver deck to partially raise it, then release the latch pin (item (2)). Lift the receiver deck to its fully raised position and ensure that the latch pin latches in the raised position.

Lowering the Receiver Deck

Refer to Figure 7-2 for this procedure.

1. Pull the latch pin (item (2)) toward the center of the analyzer to release the receiver deck.
2. Lift the receiver deck to partially lower it, then release the latch pin (item (2)). Lower the receiver deck to its fully lowered position and ensure that the latch pin latches in the lowered position.
3. With a T-10 TORX driver, install the four screws (item (1), to secure the receiver deck.

Removing the Receiver Deck

Refer to Figure 7-2 for this procedure.

1. Raise the receiver deck as outlined in "Raising the Receiver Deck," above.
2. Disconnect the flexible cables (item (3) and the two ribbon cables (item (4). Label the cables and connectors for proper reconnection later.
3. Pull the latch pin (item (5) to release one side of the receiver deck.
4. Lift the side of the receiver deck that was just released, above the side of the analyzer, and then lift the entire receiver deck out of the analyzer.

Replacing the Receiver Deck

Refer to Figure 7-2 for this procedure.

1. Reverse the procedure for "Removing the Receiver Deck," above.

Figure 7-2 Receiver Deck, Raising and Removal

Removing and Replacing the Front Panel Assembly

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-3 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6.
3. With a $5 / 16$-inch torque wrench, remove all the semirigid jumpers (item (1)) from the front panel (Option 014 only).
4. With a T-10 TORX driver, remove the eight screws (item (2)) from the sides of the frame.

CAUTION | Before removing the front panel from the analyzer, lift and support the front |
| :--- |
| of the analyzer frame. |

5. Slide the front panel over the test port connectors.
6. Disconnect the front panel interface ribbon cable (item (3).

The front panel is now free from the analyzer.

Replacement Procedure

CAUTION When replacing the front panel, align the power switch and the floppy disk drive to their corresponding front panel cutouts.

IMPORTANT When reconnecting semirigid cables, torque the cable connectors to $10 \mathrm{in}-\mathrm{lb}$.

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-3 Front Panel Assembly Removal

Removing and Replacing Front Panel Subassemblies

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Refer to Figure 7-4 for the following procedures.

Pre-removal Procedure

1. Disconnect the power cord.
2. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
3. Disconnect the display ribbon cable (item (1)) and the display lamp cable (item (2)) from the A3 front panel interface board.

Removing the A2 Display Assembly

1. With a T-10 TORX driver, remove the four retaining screws (item (3) from the display assembly.
2. Remove the display assembly from the front panel.

Removing the A3 Front Panel Interface Board

1. Remove the round knob (RPG) from the front panel by gently pulling the knob forward.
2. With a T-10 TORX driver, remove the seven screws (item (4)) from the front panel interface board.
3. From the bottom of the frame, lift the A3 front panel interface board up at an angle until the board clears the frame. Disconnect the keypad ribbon cable (item (5) from the A3 front panel interface board and lift out the board.

Removing the A1 Keypad Assembly

1. Remove the A3 front panel interface board as instructed above.
2. From the rear of the front panel assembly, remove the center retaining screw (item (6). Bend the bottom keypad assembly tabs away from the frame and push the A1 keypad assembly out of the frame.

Replacement Procedure

NOTE When replacing the assemblies, ensure that the ribbon cables are not under the assemblies.

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-4 Front Panel Subassemblies Removal

Removing and Replacing the Display Inverter Board and the Display Lamp

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- Small jeweler's screwdriver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Pre-removal Procedure

1. Disconnect the power cord.
2. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
3. Remove the display assembly. Refer to "Removing the A2 Display Assembly" on page 7-12.

Removing the Display Inverter Board

Refer to Figure 7-5 for this procedure.

1. Disconnect the ribbon cable (item (1)) and the display lamp cable (item (2)) from the display inverter board.
2. Lift the inverter retention tabs (item (3)) with slight pressure and rotate the display inverter board (item (4).
3. Lift the display inverter board (item (4)) out of the slot.

> | NOTE | $\begin{array}{l}\text { Stop now if you are only removing the display inverter board. Replace the } \\ \text { board and reverse the removal procedure. }\end{array}$ |
| :--- | :--- |

Removing the Display Lamp

Refer to Figure 7-5 for this procedure.

1. Remove the display lamp cable (item (2)) from the display inverter board (item (4)).
2. With a T-10 TORX driver, remove the four screws (item (5) on the display back panel and then lift the panel off.
3. Remove the four display bumpers (item (6).
4. To gain access to the display lamp, rotate the top of the display outward slightly.

NOTE To avoid dust or dirt particles from getting in between the display glass and the display, do not completely take out the display.
5. Remove the two screws (item (7) from the display with the jeweler's screwdriver. Slide the lamp enclosure up to remove it.
6. Remove the display lamp (item (8).

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-5 Display Inverter Board and Display Lamp Removal

Removing and Replacing the A4 Power Supply Assembly

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-6 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. With a T-10 TORX driver, remove the five screws (item (1)) from the power supply assembly.
4. Lift out and remove the A4 power supply assembly.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-6 A4 Power Supply Assembly Removal

Removing and Replacing the A6, A8, A9, and A10 Boards

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-7 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. With a T-10 TORX driver, remove the two brackets that secure cables to the top of the midweb.
4. Identify the board you want to remove and disconnect any cables that are attached to it.
5. Lift the two extractors (item (1)), located at each end of the board.

NOTE Before removing the board completely, check the bottom of the board for any attached cables.

6. While holding on to the extractors, slide the board out of the slot and remove it from the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-7 A6, A8, A9, and A10 Board Assemblies Removal

Removing and Replacing the A11 Phase Lock Board

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-8 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. With a T-10 TORX driver, remove the two brackets that secure cables to the top of the midweb.
4. With a T-10 TORX driver, remove the two screws (item (1)) from the top of the A11 phase lock board.
5. Remove the A13 frequency offset receiver assembly, if present. Refer to "Removing and Replacing the A13 Frequency Offset Receiver Assembly" on page 7-24.
6. Disengage the A12 source 20 from the A11 connector and slide the A12 partially out of the analyzer. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.
7. Disconnect any flexible cables that are attached to the A11 phase lock board.
8. Lift the two extractors (item (2)) located at each end of the board.
9. While holding on to the extractors, lift the A11 phase lock board out of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-8 A11 Phase Lock Board Removal

st540b

Removing and Replacing the A12 Source 20

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-9 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the A13 (Option 080) frequency offset receiver assembly, if present. Refer to "Removing and Replacing the A13 Frequency Offset Receiver Assembly" on page 7-24.
4. With a $5 / 16$-inch torque wrench, disconnect the semirigid cable (item (1)) from the bottom of the A12 source 20.

CAUTION To avoid damage to the semirigid cable (item (1)), pull down on the cable from the bottom of the analyzer to move it away while sliding out the A12 source 20. The cable has some spring to it and the RF pin could be damaged by the A12 source 20.
5. Disengage the A12 source 20 from the A11 connector and slide out of the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-9 A12 Source 20 Removal

Removing and Replacing the A13 Frequency Offset Receiver Assembly

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- $5 / 16$-inch open-end torque wrench (set to $10 \mathrm{in}-\mathrm{lb}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-9 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.

3 . With a $5 / 16$-inch torque wrench, disconnect the three semirigid cables (item (1) and flexible cable (item (2)) from the top of the A13 frequency offset receiver assembly.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
4. Disengage the A13 frequency offset receiver assembly from the A11 connector and slide out of the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-10 A13 Frequency Offset Receiver Assembly Removal

Removing and Replacing the A14 System Motherboard

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-11 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
4. Remove the A12 source 20. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.
5. Remove the A13 (Option 080) frequency offset receiver assembly, if present. Refer to "Removing and Replacing the A13 Frequency Offset Receiver Assembly" on page 7-24.
6. Remove the A11 phase lock board. Refer to "Removing and Replacing the A11 Phase Lock Board" on page 7-20.
7. Remove the A4 power supply assembly. Refer to "Removing and Replacing the A4 Power Supply Assembly" on page 7-16.
8. Remove the card cage boards (A6, A8, and A10). Remove A9 (Option 080), if present. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.
9. Remove the A15 CPU board. Refer to "Removing and Replacing the A15 CPU Board" on page 7-28.
10.Remove the Midweb. Refer to "Removing and Replacing the Midweb and the B1 Fan" on page 7-72.
11.Disconnect the A1 front panel ribbon cable (item (1)), the A40 floppy disk drive ribbon cable (item (2)), the A16 test set motherboard ribbon cable (item (3), and the USB hub assembly cable (item (4)) from the A14 system motherboard.
10. Lift the tab at the rear of the A40 floppy disk drive enclosure and remove the rear enclosure cover.
11. Remove the four screws (item 5) that secure the A14 system motherboard.
12. Lift the A14 system motherboard out of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-11 A14 System Motherboard Removal

st542b

Removing and Replacing the A15 CPU Board

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-12 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Disconnect the hard disk drive assembly (HDDA) ribbon cable and interface board from the A15 CPU board by loosening the two screws (item (1).
4. Disengage the A6 SPAM board from the A15 CPU board by performing the following steps.
a. Lift the two extractors located at each end of the board.
b. While holding onto the extractors, lift the board halfway out of the slot.
c. Let the extractors drop to their normal position.
d. Lower the board into the slot.

The board should now rest above its normal seated position.
5. With a T-10 TORX driver, remove the 14 screws (item (2)) from the rear panel of the A15 CPU board.
6. Gently pull on the finger grip (item (3) to disengage the A15 CPU board from the analyzer.
7. Slide the A15 CPU board out of the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-12 A15 CPU Board Removal

Removing and Replacing the A16 Test Set Motherboard

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-13 for this procedure.

1. Disconnect the power cord.
2. Remove the outer covers. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. Remove the A21 SOMA 50 (E8363B and E8364B only) or RF cable W1 (E8362B only).
4. Remove the A41 hard disk drive and stationary board (shield).
5. Disconnect the ribbon cables (item (1)) from the A16 test set motherboard:

- A14 system motherboard ribbon cable.
- A36 and A37 Option UNL source attenuator ribbon cables, if present.
- A43 and A44 Option 016 receiver attenuator ribbon cables, if present.
- Mixer bias board ribbon cable.
- A35 receiver motherboard ribbon cable.
- A20 LODA ribbon cable.
- A18 MA 20 ribbon cable.
- A17 LOMA 10 ribbon cable.

6. Disconnect the wrapped-wire cables (item (2)) from the A16 test set motherboard:

- Front-panel LED board cable.
- A22 switch splitter cable.
- A23 and A24 detector cables (E8363B and E8364B only).
- A38 and A39 Option UNL bias tee cables, if present.
- A45 and A46 Option 016 reference channel transfer switch control cables, if present.

7. Release the flexible RF cables from the cable clamp (item (3). Release the receiver deck by pulling the latch pin (item (4), and move the entire receiver deck out of the way, with the cables attached.
8. With a T-10 TORX driver, remove the following screws:

- Nine screws (item (5) from the rear panel.
- Four screws (item (6) from the A16 test set motherboard.

9. Slide the A16 test set motherboard toward the front of the instrument to release the locking pins (item (7), then lift the motherboard and remove it from the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-13 A16 Test Set Motherboard Removal

Removing and Replacing the A17 LOMA 10

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-14 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. With a $5 / 16$-inch torque wrench, disconnect the three semirigid cables (item (1)) from the A17 LOMA 10.
4. Disconnect the ribbon cable (item (2)) at the A17 LOMA 10.
5. With a T-10 TORX driver, remove the four mounting screws (item (3)) from the side of the analyzer.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
6. Remove the A17 LOMA 10 from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-14 A17 LOMA 10 Removal

Removing and Replacing the A18 MA 20

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-14 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (1)) from the A18 MA 20. It may be necessary to remove these cables completely to allow the A18 MA 20 to be removed from the analyzer.
4. Disconnect the ribbon cable (item (2)) at the A18 MA 20.
5. With a T-10 TORX driver, remove the four mounting screws (item (3) from the side of the analyzer.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
6. Remove the A18 MA 20 from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-15 A18 MA 20 Removal

Removing and Replacing the A19 Splitter

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-14 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. With a $5 / 16$-inch torque wrench, disconnect the three semirigid cables (item (1)) from the A19 splitter.
4. With a T-10 TORX driver, remove the two mounting screws (item (2)).

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
5. Remove the A19 splitter from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-16 A19 Splitter Removal

$s t 547 b$

Removing and Replacing the A20 LODA

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-14 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. With a $5 / 16$-inch torque wrench, disconnect the six semirigid cables (item (1)) from the A20 LODA.
4. Disconnect the ribbon cable (item (2)) at the A20 LODA.
5. With a T-10 TORX driver, remove the six mounting screws (item (3).

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
6. Remove the A20 LODA from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-17 A20 LODA Removal

Removing and Replacing the A21 SOMA 50 (E8363B and E8364B Only)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-14 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (1)) from the A21 SOMA 50.
4. Disconnect the flexible cable (item (2)) from the A21 SOMA 50.
5. Disconnect the ribbon cable (item (3) at the A21 SOMA 50.
6. With a T-10 TORX driver, remove the four mounting screws (item (4).

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
7. Remove the A21 SOMA 50 from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-18 A21 SOMA 50 Removal (E8363B and E8364B Only)

Removing and Replacing the A22 Switch Splitter

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-19 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. Disconnect the stranded switch control cable (item (1)) from the A22 switch splitter.
4. With a $5 / 16$-inch torque wrench, disconnect the five semirigid cables (item (2)).
5. With a T-10 TORX driver, remove the two mounting screws (item (3).

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
6. Remove the A22 switch splitter from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-19 A22 Switch Splitter Removal

Removing and Replacing the 30-dB Fixed Attenuators (E8362B only)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- $1 / 4$-inch open-end wrench
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-20 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up as shown. It may be convenient to raise the receiver deck to provide better access. If necessary, refer to "Raising and Removing the Receiver Deck" on page 7-8.
3. Identify the fixed attenuator to be removed.
4. Disconnect the two semirigid cables (item (1)) from the attenuator:

- Use a $1 / 4$-inch open-end wrench, adjacent to the connector to be removed, to hold the attenuator in a fixed position.
- Use a $5 / 16$-inch torque wrench to loosen the cable connector.
- Repeat for the cable connector at the other end of the attenuator.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the attenuator. Do not over-bend the semirigid cables.
5. Cut the cable tie (item (2)), used to secure the attenuator, and remove the attenuator from its holder. Observe the caution above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-20 30-dB Fixed Attenuator Removal (E8362B Only)

Removing and Replacing the A23 and A24 Detectors (E8363B and E8364B only)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-21 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up as shown. It may be convenient to raise the receiver deck to provide better access. If necessary, refer to "Raising and Removing the Receiver Deck" on page 7-8.
3. Identify the detector to be removed.
4. Disconnect the stranded control cable (item (1)) from the appropriate detector.
5. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (2)) from the detector.
6. Remove the flexible cable (item (3) from the detector.
7. With a T-10 TORX driver, remove the two mounting screws (item (4)).

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
8. Remove the detector from the analyzer. Observe the cAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-21 A23 and A24 Detectors Removal (E8363B and E8364B Only)

Removing and Replacing the A25 and A26 Test Port Couplers

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- 1-inch open-end torque wrench (set to $72 \mathrm{in}-\mathrm{lb}$)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-22 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. Identify the test port coupler to be removed.
4. Remove the A43 or A44 receiver step attenuator, if present. This will allow access to the test port couplers. Refer to "Removing and Replacing the A43 and A44 35-dB Receiver Step Attenuators (Option 016)" on page 7-68.
5. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (1)) from the test port coupler.
6. With a 1-inch torque wrench, remove the test port coupler nut (item (2)) from the front panel.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
7. Remove the test port coupler from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-22 A25 and A26 Test Port Couplers Removal

Removing and Replacing the A27, A28, A29, and A30 First Converters (Mixers) and Mixer Bias Board

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-22 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising and Removing the Receiver Deck" on page 7-8 if necessary.
3. With a $5 / 16$-inch torque wrench, disconnect the eight semirigid cables (item (1)) and the four flexible cables (item (2)).
4. With a T-10 TORX driver, remove the four mounting screws (item (3).

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
5. Remove the mixer bracket and disconnect the ribbon cable (item (4). Observe the CAUTION above.
6. If replacing a first converter (mixer):
a. Remove the defective mixer from the bracket by removing the attachment screws.
b. Install the new mixer onto the bracket using the attachment screws from the mixer that was removed.
If replacing the mixer bias board:
a. Remove all four mixers from the bracket by removing the attachment screws.
b. Remove the mixer bias board by removing the attachment screws.
c. Install the new mixer bias board onto the bracket using the attachment screws from the mixer bias board that was removed.
d. Reinstall the four mixers using their original attachment screws.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-23 A27, A28, A29, and A30 First Converters (Mixers) Removal

Removing and Replacing the A31, A32, A33, and A34 Receiver Modules and LO Reject Filter Board

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-24 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising the Receiver Deck" on page 7-8 if necessary.
3. Identify the receiver module to be removed. To replace one of the receiver modules, the LO reject filter board (item (1) must be removed from the receiver motherboard.
4. Disconnect the flexible cables (item (2)) from the LO reject filter board and the receiver modules.
5. Disconnect the ribbon cable (item (3) from the LO reject filter board.
6. With a T-10 TORX driver, remove the eight mounting screws (item (4)) from the LO reject filter board. Remove the board from the receiver motherboard.
7. With a T-10 TORX driver, remove the three mounting screws (item (5) from the appropriate receiver module.
8. Remove the receiver module from the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-24 A31, A32, A33, and A34 Modules and LO Reject Filter Board Removal

Removing and Replacing the A35 Receiver Motherboard

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-13 for this procedure.

1. Disconnect the power cord.
2. Remove the outer covers. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising the Receiver Deck" on page 7-8 if necessary.
3. Remove the LO reject filter board and all four receiver modules. Refer to "Removing and Replacing the A31, A32, A33, and A34 Receiver Modules and LO Reject Filter Board" on page 7-52.
4. Disconnect the flexible cables (item (1)) from the receiver motherboard.
5. Disconnect the flexible cable (item (2)) from the receiver motherboard if present (Option 080 only).
6. Disconnect the ribbon cable (item (3) from the receiver motherboard.
7. Remove the receiver deck from the analyzer with the receiver motherboard attached. Refer to "Removing the Receiver Deck" on page 7-8, if necessary. The receiver motherboard and receiver deck are replaced as one unit.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-25 A35 Receiver Motherboard Removal

Removing and Replacing the A36 and A37 60-dB Source Step Attenuators (Option UNL)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-26 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising the Receiver Deck" on page 7-8 if necessary.
3. Identify the step attenuator to be removed. To replace the attenuator, the bracket holding the attenuator, detector (E8363B/E8364B) or fixed pad (E8362B), and bias tee must be removed.
4. Disconnect the ribbon cable (item (1)) from the appropriate attenuator.
5. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (2)) from the appropriate step attenuator, two semirigid cables (item (3) from the detector (or fixed pad), and two semirigid cables (item (4) from the bias tee.
6. Disconnect the stranded control cable (item (5)) and the flexible cable (item (6) from the appropriate detector (E8363B/E8364B only) and the stranded bias tee cable (item (7) from A16 test set motherboard. (Release the bias tee cable such that it can be removed with the bias tee.)
7. With a T-10 TORX driver, remove the three mounting screws (item (8) from the bracket holding the attenuator, detector (or fixed pad), and bias tee.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
8. Remove the bracket from the analyzer with the attenuator, detector (or fixed pad), and bias tee attached. Observe the CAUTION above.
9. With a T-10 TORX driver, remove the two mounting screws holding the attenuator.

Replacement Procedure

1. Reverse the order of the removal procedure using the existing attenuator ribbon cable.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-26 A36 and A37 60-dB Source Step Attenuators Removal (Option UNL)

Removing and Replacing the A38 and A39 Bias Tees (Option UNL)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-26 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising the Receiver Deck" on page 7-8 if necessary.
3. Identify the bias tee to be removed. To replace the bias tee, the bracket holding the attenuator, detector (E8363B/E8364B) or fixed pad (E8362B), and bias tee must be removed.
4. Disconnect the ribbon cable (item (1)) from the appropriate attenuator.
5. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (2)) from the appropriate step attenuator, two semirigid cables (item (3) from the detector (or fixed pad), and two semirigid cables (item (4) from the bias tee.
6. Disconnect the stranded control cable (item (5)) and the flexible cable (item (6) from the appropriate detector ($\mathrm{E} 8363 \mathrm{~B} / \mathrm{E} 8364 \mathrm{~B}$ only) and the stranded bias tee cable (item (7) from A16 test set motherboard. (Release the bias tee cable such that it can be removed with the bias tee.)
7. With a T-10 TORX driver, remove the three mounting screws (item (8) from the bracket holding the attenuator, detector (or fixed pad), and bias tee.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
8. Remove the bracket from the analyzer with the attenuator, detector (or fixed pad), and bias tee attached. Observe the CAUTION above.
9. With a T-8 TORX driver, remove the mounting screws holding the bias tee and install the new bias tee with cable.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-27 A38 and A39 Bias Tees Removal (Option UNL)

Removing and Replacing the A40 Floppy Disk Drive

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to 21 in-lb)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-28 and Figure 7-29 for this procedure.

1. Disconnect the power cord.
2. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
3. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
4. Remove the A13 (Option 080) frequency offset receiver assembly, if present. Refer to "Removing and Replacing the A13 Frequency Offset Receiver Assembly" on page 7-24.
5. Remove the A12 source 20. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.
6. Disconnect the ribbon cable (item (1)) from the A14 system motherboard.
7. Lift the tab at the rear of the A40 floppy disk drive enclosure and remove the rear enclosure cover (item (2)).
8. Slide the A40 floppy disk drive out of the front of the enclosure. The A40 floppy disk drive fits snugly. You may have to push the drive from the back to remove it from the analyzer.

Replacement Procedure

1. Reverse the order of the removal procedure using the existing ribbon cable (item (1)).
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-28 A40 Floppy Disk Drive Removal

Figure 7-29 A40 Floppy Disk Drive (Exploded View)

st559a

Removing and Replacing the A41 Hard Disk Drive

Certain unique files exist on the hard disk drive that are necessary for proper operation of your analyzer. These files must be copied to another location to allow them to be installed onto the new hard disk drive after it has been installed.

If you are replacing the hard disk, not just removing the hard disk drive assembly (HDDA) to allow access to other assemblies, the following procedure must be performed first.

If you are not replacing the actual hard disk, proceed to "Tools Required" on page 7-63.

Copy Unique Files from the Hard Disk

The files to be copied include:

- license file
- mixer calibration files
- user calibration kit file
- any user data files or program files that need to be preserved

The network analyzer must be powered up and operating for this procedure.

1. Insert a writable floppy disk into the floppy disk drive.
2. Open two copies of Windows Explorer:
a. Click on START. (It may be necessary to exit the Network Analyzer application.)
b. Point to Programs, Accessories, and then click on Windows Explorer.
c. Adjust the horizontal width of the Windows Explorer window to approximately one-half the width of the display and position it to either the left or right side of the display.
d. Repeat this procedure to create another copy of the Windows Explorer window and position it to the opposite side of the display so that the two copies are displayed side-by-side.
3. Set one copy of Windows Explorer to the A: drive and the other to the \mathbf{C} : drive:
a. In one copy of Windows Explorer, double-click on My Computer, and then double-click on $3 \mathbf{1 / 2}$ Floppy (A:). A listing of the files on the floppy disk will appear in the right-hand side of the window.
b. In the other copy of Windows Explorer, double-click on My Computer, and then double-click on Hard Disk (C:).
c. Navigate to $\mathrm{C}: \backslash$ Program Files \backslash Agilent \backslash Network Analyzer by double-clicking on each of the names in this path name, in turn. A listing of the files in this directory on the hard disk will appear in the right-hand side of the window.
4. Copy each of the following files from the hard disk drive to the floppy disk drive:
a. Files to copy:
gen.lic user_calkitfile mxcalfile_pxx (where xx is a 1 or 2 digit number)
Any personal user files that you wish to preserve.
b. Click and drag each of the files on the C: drive from the $\mathrm{C}: \backslash$ Program Files \backslash Agilent \backslash Network Analyzer directory by clicking and holding on the file name in the directory and, while holding the mouse button down, drag the file name to the A: drive. If you need help with this "dragging" process, refer to Windows Help.
5. After all files have been copied, remove the floppy disk from the analyzer's disk drive and exit both copies of Windows Explorer.

Tools Required

- T-10 TORX driver (set to 4 in-lb; for hard disk drive replacement)
- T-10 TORX driver (set to $7 \mathrm{in}-\mathrm{lb}$; for hard disk drive replacement)
- T-10 TORX driver (set to $9 \mathrm{in}-\mathrm{lb}$; for all other T-10 applications)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- ESD grounding wrist strap

Overview of Procedures

There are two procedures related to removing and replacing the hard disk drive assembly (HDDA):

Removing the HDDA

Disconnect and remove the HDDA from the analyzer so that the following assemblies may be serviced.

- A14 system motherboard
- A16 test set motherboard
- A41 hard disk drive

Disassembling the HDDA

This procedure outlines how to disassemble the HDDA, once it has been removed from the analyzer, to replace the A41 hard disk drive.

Removal Procedure

1. Disconnect the power cord.

Removing the HDDA

Refer to Figure 7-30 for this procedure.

1. With a T-10 TORX driver, loosen the four HDDA mounting screws (item (1)) on the rear panel.
2. Remove the HDDA from the analyzer by pulling on the finger grip (item (2). The HDDA interconnects with a connector inside the analyzer rear panel so moderate force may be necessary to disengage this connector.

Figure 7-30 Hard Disk Drive Assembly Removal

Disassembling the HDDA

IMPORTANT When replacing the hard disk, first torque all four screws (item (3) to $4 \mathrm{in}-\mathrm{lb}$, then secure each to $7 \mathrm{in}-\mathrm{lb}$ with a T-10 TORX driver.

Refer to Figure 7-31.

1. Remove the hard disk drive assembly from the analyzer. Refer to "Removing the HDDA" on page 7-64.
2. With a T-10 TORX driver, remove the four screws (item (1), and the eight bushings (item (2)), that mount the hard disk (item (4)), to the bracket.
3. Disconnect the hard disk (item (4)) from the interface board (item (3).

Figure 7-31 Hard Disk Drive Assembly (Exploded View)

st561a

Replacement Procedure

Installing the New A41 Hard Disk Drive

Refer to Figure 7-31.

1. With the disk drive bracket right-side up (it is shown upside down in Figure 7-31), insert four bushings (item (2)) into the four holes in the bracket.
2. Connect the new hard disk drive (item (4) to the interface board (item (3) by pushing it firmly into the connector on the interface board. Take special care to align the connector pins. Applying power to a misaligned connection can permanently damage the hard disk drive.
3. While holding the disk drive in place, turn the bracket over and insert the other four bushings (item (2)), into the other side of the same four holes specified in step 1.
4. Install the four screws (item (1), finger tight, through the eight bushings (item (2), to attach the hard disk drive to the bracket.

With a T-10 TORX driver, torque the four screws, in a Z-pattern, to $4 \mathrm{in}-\mathrm{lb}$, and then torque them again, in the same pattern, to 7 in-lb.

Reinstalling the HDDA

Refer to Figure 7-30 on page 7-64.

1. Slide the hard disk drive assembly into the slot in the rear panel and push it firmly into place to engage the connector.
2. With a T-10 TORX driver, tighten the four HDDA mounting screws (item (1)).

Install Backup Files onto the New Hard Disk Drive

The files that were saved onto a floppy disk in Step 1 must now be installed onto the new hard disk drive for the analyzer to operate properly.

The network analyzer must be powered up and operating for this procedure.

1. Insert the floppy disk containing the backup files into the floppy disk drive.
2. Open two copies of Windows Explorer:
a. Click on START. (It may be necessary to exit the Network Analyzer application.)
b. Point to Programs, Accessories, and then click on Windows Explorer.
c. Adjust the horizontal width of the Windows Explorer window to approximately one-half the width of the display and position it to either the left or right side of the display.
d. Repeat this procedure to create another copy of the Windows Explorer window and position it to the opposite side of the display so that the two copies are displayed side-by-side.
3. Set one copy of Windows Explorer to the \mathbf{A} : drive and the other to the \mathbf{C} : drive:
a. In one copy of Windows Explorer, double-click on My Computer, and then double-click on 3 1/2 Floppy (A:). A listing of the files on the floppy disk will appear in the right-hand side of the window.
b. In the other copy of Windows Explorer, double-click on My Computer, and then double-click on Hard Disk (C:).
c. Navigate to C:\Program Files \backslash Agilent \backslash Network Analyzer by double-clicking on each of the names in this path name, in turn. A listing of the files in this directory on the hard disk will appear in the right-hand side of the window.
4. Copy each of the backup files from the floppy disk to the hard disk drive:
a. Click and drag each of the files from the \mathbf{A} : drive to the $\mathrm{C}: \backslash$ Program Files \backslash Agilent \backslash Network Analyzer directory by clicking and holding on the file name in the \mathbf{A} : directory and, while holding the mouse button down, drag the file name to the Network Analyzer directory on the C: drive. If you need help with this "dragging" process, refer to Windows Help.
5. After all files have been copied, remove the floppy disk from the analyzer's disk drive and exit both copies of Windows Explorer.

Set Up the Agilent Administrator Password

If the hard disk has been replaced, it is necessary to set up the Agilent administrator password for the analyzer. This requires obtaining a password from Agilent:

Obtaining a Password

- If this procedure is being performed by Agilent personnel, go to the following Internet site and follow the instructions under "Agilent Administrator Password".
http://mktwww.soco.agilent.com/field/service/network/pna/support.htm
- If this procedure is being performed by non-Agilent personnel, contact Agilent for a password before beginning this procedure. Refer to "Contacting Agilent" on page 2-10.

Entering Your Agilent Administrator Password

The network analyzer must be powered up and operating for this procedure.

1. Exit the Network Analyzer program, if it is running.
2. On the Windows Desktop, right-click on My Computer, and then click Manage.
3. In the Computer Management window, navigate to System Tools, Local Users and Groups, Users.
4. Right-click on Agilent, and then click on Set Password.
a. Type the password obtained from Agilent as the Password. Refer to "Obtaining a Password" on page 7-67 for information if you have not yet obtained this password.
b. Type the password again in the Confirm password block.
c. Click OK.
5. Right-click on Agilent, and then click on Properties.
a. Unselect User must change password at next logon (if not already unselected).
b. Unselect User cannot change password (if not already unselected).
c. Select Password never expires (if not already selected).
d. Click OK.
6. Close the Computer Management window.

Post-Repair Procedures

Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table on page 7-75.

Removing and Replacing the A43 and A44 35-dB Receiver Step Attenuators (Option 016)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-26 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising the Receiver Deck" on page 7-8 if necessary.
3. Identify the step attenuator to be removed.
4. Disconnect the ribbon cable (item (1)) from the appropriate attenuator.
5. With a $5 / 16$-inch torque wrench, disconnect the two semirigid cables (item (2)) from the attenuator.
6. With a T-10 TORX driver, remove the two mounting screws (item (3). Support the attenuator while removing the mounting hardware.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.
7. Remove the attenuator from the analyzer. Observe the CAUTION above.

Replacement Procedure

1. Reverse the order of the removal procedure using the existing attenuator ribbon cable.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-32 A43 and A44 35-dB Receiver Step Attenuators Removal (Option 016)

Removing and Replacing the A45 and A46 Reference Channel Transfer Switches (Option 081)

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

Refer to Figure 7-26 for this procedure.

1. Disconnect the power cord.
2. Remove the outer cover. Refer to "Removing the Covers" on page 7-6. Position the analyzer bottom side up and raise the receiver deck as shown. Refer to "Raising the Receiver Deck" on page 7-8 if necessary.
3. Identify the switch assembly to be removed. If removing A45, go to step 4. If removing A46, perform the following steps first.
a. Remove the A43 receiver step attenuator, if present. Refer to "Removing and Replacing the A43 and A44 35-dB Receiver Step Attenuators (Option 016)" on page 7-68.
b. Remove the A25 test port coupler. Refer to "Removing and Replacing the A25 and A26 Test Port Couplers" on page 7-48.
4. Disconnect the stranded control cable (item (1)) by pressing the release button in the center of the connector.
5. With a $5 / 16$-inch torque wrench, disconnect the three semirigid cables (item (2)) from the A45 or A46 reference channel switch.
6. With a T-10 TORX driver, remove the four mounting screws (item (3) holding A46 or the two mounting screws (item (4)) holding the A45 mounting bracket.

CAUTION Be careful not to damage the center pins of the semirigid cables. Some flexing of the cables is necessary to remove the assembly. Do not over-bend the semirigid cables.

7. Remove A45 or A46 from the analyzer. Observe the CAUTION above.
8. With a T-10 TORX driver, remove the four mounting screws (item (3) holding A45 to the bracket.

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Figure 7-33 A45 and A46 Reference Channel Transfer Switches Removal (Option 081)

Removing and Replacing the Midweb and the B1 Fan

Tools Required

- T-10 TORX driver (set to 9 in-lb)
- T-20 TORX driver (set to $21 \mathrm{in}-\mathrm{lb}$)
- Pozidriv screw driver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD grounding wrist strap

Removal Procedure

1. Disconnect the power cord.
2. Remove the front panel assembly. Refer to "Removing and Replacing the Front Panel Assembly" on page 7-10.
3. Remove the outer and inner covers. Refer to "Removing the Covers" on page 7-6.
4. On the bottom side of the analyzer, remove the A27-A30 first converters (mixers). This is necessary to gain access to one of the midweb mounting screws. Refer to "Removing and Replacing the A27, A28, A29, and A30 First Converters (Mixers) and Mixer Bias Board" on page 7-50.
5. Remove the A13 (Option 080) frequency offset receiver assembly, if present. Refer to "Removing and Replacing the A13 Frequency Offset Receiver Assembly" on page 7-24.
6. Remove the A12 source 20. Refer to "Removing and Replacing the A12 Source 20" on page 7-22.
7. Remove the A11 phase lock board. Refer to "Removing and Replacing the A11 Phase Lock Board" on page 7-20.
8. Remove the A4 power supply assembly. Refer to "Removing and Replacing the A4 Power Supply Assembly" on page 7-16.
9. Remove the card cage boards (A6, A8, and A10). Remove A9 (Option 080), if present. Refer to "Removing and Replacing the A6, A8, A9, and A10 Boards" on page 7-18.

NOTE This procedure has two parts: removing the midweb and removing the fan

 from the midweb. You must remove the midweb before removing the fan.
Removing the Midweb

Refer to Figure 7-34.

1. Disconnect the power cable (item (1)) for the three fans from the A14 system motherboard.
2. With a T-10 TORX driver, remove the seven midweb mounting screws (item (2). Lift out the midweb.

Figure 7-34 Midweb Removal

st562a

Removing the Fan

Refer to Figure 7-35.

1. To remove the fan, it is necessary to remove the four nylon rivets that attach it to the midweb. To do this, use the Pozidriv screwdriver on the nylon screw (item (1) and a small blade screwdriver to stabilize the rivet. Turn and push the rivet out of the rivet hole. Once the four rivets are out, remove the fan.

Figure 7-35 B1 Fan Removal

Replacement Procedure

1. Reverse the order of the removal procedure.
2. Perform the post-repair adjustments, verifications, and performance tests that pertain to this removal procedure. Refer to Table 7-2 on page 7-75.

Post-Repair Procedures

After the replacement of an assembly, you must perform the service procedures in the order listed in Table 7-2. Refer to the following chapters in this manual for the procedures referenced in this table. Procedures referenced in this table are located in Chapter 3, "Tests and Adjustments," unless specified otherwise.
Table 7-2 Related Service Procedures

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A1 keypad assembly	No adjustment needed	A1 Front Panel Keypad and RPG Test in Chapter 4
A2 display assembly	No adjustment needed	A2 Display Test in Chapter 4
A3 front panel interface board	No adjustment needed	A1 Front Panel Keypad and RPG Test and A2 Display Test in Chapter 4
A4 power supply assembly	No adjustment needed	None needed
A6 SPAM board	No adjustment needed	Noise Floor Test Trace Noise Test System Crosstalk Test
A8 fractional-N synthesizer board	LO Power Adjustment	Frequency Accuracy Test The Operator's Check
A9 fractional-N synthesizer board	Offset LO Adjustment	The Operator's Check
A10 frequency reference	Reference Adjustment Restore option data (Refer to "Repairing and Recovering Option Data" in Appendix B.)	Frequency Accuracy Test
board	No adjustment needed	Frequency Accuracy Test
A11 phase lock board	3.8 GHz PMYO Frequency Adjustment Source Calibration Adjustment	Source Power Accuracy Test Source Power Linearity Test Frequency Accuracy Test
A12 source 20	Offset LO Adjustment	The Operator's Check
A13 frequency offset receiver assembly	No adjustment needed	The Operator's Check
A15 CPU board	A1 Front Panel Keypad and RPG Test and A2 Display Test in Chapter 4 The Operator's Check	

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A16 test set motherboard	Reinstall the serial number. (Refer to "Installing or Changing a Serial Number" in Appendix B.)	The Operator's Check System Crosstalk Test
A17 LOMA 10	LO Power Adjustment	Frequency Accuracy Test The Operator's Check
A18 MA 20	LO Power Adjustment	Frequency Accuracy Test The Operator's Check
A19 splitter	LO Power Adjustment	The Operator's Check
A20 LODA	LO Power Adjustment	The Operator's Check
A21 SOMA 50 (E8363B/E8364B only)	Source Calibration Adjustment	Source Power Accuracy Test Source Power Linearity Test Frequency Accuracy Test
A22 switch splitter	Source Calibration Adjustment	Source Power Accuracy Test Calibration Coefficient Test
A23 and A24 detectors (E8363B/E8364B only) or 30-dB fixed attenuators (E8362B only)	Source Calibration Adjustment	Source Power Linearity Test Calibration Coefficient Test
A25 and A26 test port couplers	Source Calibration Adjustment	Source Power Accuracy Test Calibration Coefficient Test
A27, A28, A29, and A30 first converters (mixers)	Receiver Calibration Adjustment	Receiver Compression Test Noise Floor Test Calibration Coefficient Test System Crosstalk Test Dynamic Accuracy Test
A31, A32, A33, and A34 receiver modules	Receiver Calibration Adjustment	Receiver Compression Test Noise Floor Test Calibration Coefficient Test System Crosstalk Test Dynamic Accuracy Test
A35 receiver motherboard	Receiver Calibration Adjustment	The Operator's Check

Table 7-2 Related Service Procedures (Continued)

Replaced Assembly	Adjustments and Other Procedures	Verification, Performance, and Other Tests and Procedures
A36 and A37 60-dB source step attenuators	Source Calibration Adjustment	Source Power Accuracy Test System Crosstalk Test Calibration Coefficient Test
A38 and A39 bias tees	Source Calibration Adjustment	Source Power Accuracy Test Calibration Coefficient Test
A40 floppy disk drive	No adjustment needed	Read and write to the drive
A41 hard disk drive	Restore previously saved receiver calibration data (or perform Receiver Calibration Adjustment)	Read and write to the drive
A43 and A44 35-dB receiver step attenuators	Receiver Calibration Adjustment	The Operator's Check System Crosstalk Test
A45 and A46 reference channel transfer switches	Source Calibration Adjustment Receiver Calibration Adjustment	The Operator's Check
System Crosstalk Test		

a. If a backup copy of receiver calibration data from the faulty disk drive is available, it can be copied to the new disk drive. If not, new data must be generated by performing the "Receiver Calibration Adjustment."

A Error Terms

Information in This Appendix

Your PNA series network analyzer calculates error terms by measuring well-defined calibration devices over the frequency range of interest and comparing the measured data with an ideal model for the devices. The differences of the compared data represent systematic (repeatable) errors of the analyzer system. The analyzer calculates and stores these differences as error terms. These error terms are then removed from subsequent measurements when error correction is on.

NOTE
 For details on the various levels and theory of error-correction, refer to the embedded help in the analyzer.

Appendix A at-a-Glance

Section Title	Summary of Content	Start Page
Using Error Terms as a Diagnostic Tool	How to use error terms as a preventive maintenance and troubleshooting tool.	Page A-3
Performing Measurement Calibration	Procedure for measurement calibration. Measurement calibration must be performed before you can use error terms as a tool.	Page A-4
Using Flowgraphs to Identify Error Terms	Flowgraphs of the error terms for 1 port and 2 port calibrations.	Page A-4
Accessing Error Terms	How to access error terms either manually or programmatically using the analyzer front panel or SCPI and COM/DCOM commands.	Page A-6
Error Term Data	Typical values of the error terms of your analyzer. Included are: - a table of typical values - typical response plots	Page A-8

Using Error Terms as a Diagnostic Tool

By examining error terms, you can monitor system performance for preventive maintenance and troubleshooting purposes.

The magnitude and shape of the error terms are affected by:

- calibration kit devices
- cables
- adapters and accessories
- the assemblies from the signal separation group of the analyzer

Calibration kit devices, cables, and adapters and accessories are the most common cause of error term anomalies. Make sure of the following:

- Connectors must be clean, gaged, and within specification.
- Use proper connection technique during measurement and calibration. For information on connection technique and on cleaning and gaging connectors, refer to "Review the Principles of Connector Care" on page 3-5or to the calibration kit's user's and service guide.

Preventive Maintenance

If you print or plot the error terms at set intervals (weekly, monthly and so forth), you can compare current error terms to these records. A stable system should generate repeatable error terms over long intervals, (for example, six months). Look for the following:

- A long-term trend often reflects drift, connector and cable wear, or gradual degradation, indicating the need for further investigation and preventive maintenance. Yet, the system may still conform to specifications. The cure is often as simple as cleaning and gaging connectors and cables.
- A sudden shift in error terms may indicate the need for troubleshooting.

Troubleshooting

You can use the error terms as a tool to isolate faulty assemblies in the signal separation group of your analyzer. You can compare the current values to preventive maintenance records or to the typical values listed in Table A-1 on page A-9, or data trace plots that start in "Error Term Data" on page A-8.
To find assemblies related to error term failures, refer to plot descriptions in "Error Term Data" on page A-8. Each plot description lists common assemblies related to each error term. Identify the assembly and refer to Chapter 4, "Troubleshooting."

NOTE Always suspect calibration devices, cables, or improper connector maintenance as the primary cause of an error term anomaly.

Performing Measurement Calibration

A calibration must be performed to allow the analyzer to calculate the error terms before they can be used as a tool:

CAUTION Perform the following procedure only at a static-safe workstation, and wear a grounded wrist strap.

This is important. If not properly protected against, electrostatic discharge can seriously damage your analyzer, resulting in costly repair.

To reduce the chance of electrostatic discharge, follow all of the recommendations outlined in "Electrostatic Discharge Protection" on page $1-5$, when performing the following calibration.

1. Connect a type-N cable to Port 2.
2. Perform a full 2-port calibration, FULL SOLT 2-Port. Refer to embedded help in the analyzer if necessary.

Using Flowgraphs to Identify Error Terms

Flowgraphs are a graphical representation of signal flow through the measurement path. The flowgraphs in Figure A-1 and Figure A-2 illustrate the error terms associated with measurement calibration.

Figure A-1 Flowgraph of One-Port Error Terms for Port 1

sc86a
where:
E = Error term
Subscript:
D = Directivity
S = Source Match
R = Reflection Tracking

The error terms are the same for a one port measurement on Port $2\left(\mathrm{~S}_{22}\right)$.

Figure A-2 Flowgraph of Two-Port Error Terms

sc87a cdr
where:
$\mathrm{E}=$ error term
1st Subscript:
D = Directivity
S = Source Match
R = Reflection Tracking
X = Crosstalk (Isolation)
L = Load Match
$\mathrm{T}=$ Transmission Tracking
2nd Subscript:
F = forward measurement (Port 1 to Port 2)
$R=$ reverse measurement (Port 2 to Port 1)

Accessing Error Terms

Error terms can be accessed either manually or programmatically:

Manually

- "Front Panel Access to Error Terms" on page A-6

Programmatically

- "GPIB Access to Error Terms" on page A-7
- "COM/DCOM Access to Error Terms" on page A-7

Manual Access to Error Terms

Front Panel Access to Error Terms

> NOTE Ensure the calibration correction is active by making sure that Correction on/OFF has a check-mark in the Calibration menu.

To access the error terms from the front panel, perform the following steps:

1. In the System menu, point to Service, Utilities, and then click Cal Set Viewer.

The Cal Set Viewer toolbar appears directly above the trace window.
2. In the Cal Set list, select the desired cal set.
3. Click the Standards/ETerms button to toggle between viewing the raw measurement data from the standard or the corrected error term data. Note that the title of the center box in the toolbar will toggle between Standard and Error Term.
4. In the Standard or Error Term list, select the standard or error term to view. Click the View check box.
5. Compare the displayed measurement trace to the equivalent data trace plots that start in "Error Term Data" on page A-8, to previously measured data, or to the uncorrected performance specifications listed in Table A-1 on page A-9.
6. Print numerical data or print a plot of the measurement results.

Programmatic Access to Error Terms

GPIB Access to Error Terms

You can access error terms by way of GPIB with Standard Commands for Programmable Instruments (SCPI).

For more information on GPIB and SCPI, refer to the embedded help in the analyzer. Type in keyword "errors, systematic" in the index.

COM/DCOM Access to Error Terms

You can access error terms by way of Component Object Model (COM) or Distributed Component Object Model (DCOM) software architecture.
For more information on COM and DCOM, refer to the embedded help in the analyzer. Type in keyword "errors, systematic" in the index.

Error Term Data

The error term descriptions in this section include the following information:

- a table of the error terms data
- typical plots of results
- significance of each error term
- guidelines to interpret each error term

The same description applies to both the forward (F) and reverse (R) terms. The plots shown with each description are typical of a working system following a full 2-port calibration as performed in "Performing Measurement Calibration" on page A-4.

[^7]Table A-1 Error Term Data ${ }^{\text {a }}$

	Frequency Range						
Parameter	$\begin{gathered} \hline 10 \mathrm{MHz} \\ \text { to } \\ 45 \mathrm{MHz}^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 45 \mathrm{MHz} \\ \text { to } \\ 2 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 2 \mathrm{GHz} \\ \text { to } \\ 10 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 10 \mathrm{GHz} \\ \text { to } \\ 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 20 \mathrm{GHz} \\ & \text { to } \\ & 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 40 \mathrm{GHz} \\ & \text { to } \\ & 45 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 45 \mathrm{GHz} \\ & \text { to } \\ & 50 \mathrm{GHz} \end{aligned}$
Directivity	$>22 \mathrm{~dB}$	$>24 \mathrm{~dB}$	$>22 \mathrm{~dB}$	$>16 \mathrm{~dB}$	$>16 \mathrm{~dB}$	$>15 \mathrm{~dB}$	$>13 \mathrm{~dB}$
Source Match Standard Option UNL, 014, or UNL \& 014	$\begin{aligned} & >17 \mathrm{~dB} \\ & >12 \mathrm{db} \end{aligned}$	$\begin{aligned} & >23 \mathrm{~dB} \\ & >18 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >16 \mathrm{~dB} \\ & >14 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >14 \mathrm{~dB} \\ & >12 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} >10 \mathrm{~dB} \\ >8 \mathrm{~dB} \end{array}$	$\begin{aligned} & >9 \mathrm{~dB} \\ & >7 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} >5.5 \mathrm{~dB} \\ >4 \mathrm{~dB} \end{array}$
Load Match Standard Option UNL, 014, or UNL \& 014	$\begin{aligned} & >20 \mathrm{~dB} \\ & >12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >23 \mathrm{~dB} \\ & >17 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >14 \mathrm{~dB} \\ & >13 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >10 \mathrm{~dB} \\ & >10 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >9 \mathrm{~dB} \\ & >9 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >9 \mathrm{~dB} \\ & >8 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >7 \mathrm{~dB} \\ & >6 \mathrm{~dB} \end{aligned}$
Reflection Tracking ${ }^{\text {b }}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$				
Transmission Tracking ${ }^{\text {b,c }}$	$\pm 2.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 4.5 \mathrm{~dB}$
Crosstalk (Isolation) Standard Option UNL or 014 Option UNL \& 014 Option 080 enabled $^{\text {b,d }}$	$\begin{aligned} & -85 \mathrm{~dB} \\ & -85 \mathrm{~dB} \\ & -85 \mathrm{~dB} \\ & -85 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} -100 \mathrm{~dB}^{\mathrm{e}} \\ -100 \mathrm{~dB}^{\mathrm{e}} \\ -98 \mathrm{~dB}^{\mathrm{e}} \\ -108 \mathrm{~dB}^{\mathrm{f}} \end{array}$	$\begin{aligned} & -110 \mathrm{~dB} \\ & -109 \mathrm{~dB} \\ & -108 \mathrm{~dB} \\ & -115 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -110 \mathrm{~dB} \\ & -109 \mathrm{~dB} \\ & -107 \mathrm{~dB} \\ & -120 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -108 \mathrm{~dB} \\ & -106 \mathrm{~dB} \\ & -104 \mathrm{~dB} \\ & -115 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -105 \mathrm{~dB} \\ & -103 \mathrm{~dB} \\ & -100 \mathrm{~dB} \\ & -112 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} -100 \mathrm{~dB} \\ -98 \mathrm{~dB} \\ -95 \mathrm{~dB} \\ -105 \mathrm{~dB} \end{array}$

a. Uncorrected system performance. The values in the table apply over an environmental temperature of $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$, with less than $1^{\circ} \mathrm{C}$ deviation from the calibration temperature.
b. Typical performance.
c. Transmission tracking performance is strongly dependent on cable used. These typical specifications are set based on the use of Agilent through cable part number 85133-60016.
d. 0 Hz offset.
e. The value is -85 dB for frequencies below 1 GHz .
f. The value is -95 dB from 45 MHz to 1 GHz .

If Error Terms Seem Worse than Expected

To verify that the system still conforms to specifications, perform a system verification. Refer to Chapter 3, "Tests and Adjustments."

Directivity ($\mathbf{E}_{\mathbf{D F}}$ and $\mathbf{E}_{\mathbf{D R}}$)

E_{DF} and E_{DR} are the uncorrected forward and reverse directivity error terms of the system. The directivity error of the test port is determined by measuring the S_{11} and S_{22} reflection of the calibration kit load. The load has a much better return loss specification than does the uncorrected test port. Therefore, any power detected from this measurement is assumed to be from directivity error.
The measurements most affected by directivity errors are measurements of low reflection devices.

Typical Cause of Failure

The calibration kit load is the most common cause of directivity specification failure.
If the load has been gaged and its performance independently verified, suspect the analyzer test port coupler.
To troubleshoot, refer to "Checking the Signal Separation Group" on page 4-45.
Figure A-3 Typical $\mathbf{E}_{\mathbf{D F}} / \mathbf{E}_{\mathbf{D R}}$ Without Cables

Source Match ($\mathbf{E}_{\mathbf{S F}}$ and $\mathbf{E}_{\mathbf{S R}}$)

E_{SF} and E_{SR} are the forward and reverse uncorrected source match terms of the driven port. They are obtained by measuring the reflection $\left(\mathrm{S}_{11}, \mathrm{~S}_{22}\right)$ of an open, and a short that are connected directly to the ports. Source match is a measure of the match of the coupler, as well as the match between all components from the source to the output port.

The measurements most affected by source match errors are reflection and transmission measurements of highly reflective DUTs.

Typical Cause of Failure

The calibration kit open or short is the most common cause of source match specification failure.
If the open or short performance has been independently verified, then suspect the analyzer switch splitter, step attenuator, or coupler.
To troubleshoot, refer to "Checking the Signal Separation Group" on page 4-45.

Figure A-4 Typical $\mathbf{E}_{\mathbf{S F}} / \mathbf{E}_{\mathbf{S R}}$ Without Cables

Load Match ($\mathbf{E}_{\mathbf{L F}}$ and $\mathbf{E}_{\mathbf{L R}}$)

Load match is a measure of the impedance match of the test port that terminates the output of a 2-port device. The match of test port cables is included in this response. Load match error terms are characterized by measuring the S_{11} and S_{22} responses of a "thru" configuration during the calibration procedure.

The measurements most affected by load match errors are all transmission measurements, and reflection measurements of a low insertion loss two-port device, such as an airline.

Typical Cause of Failure

The calibration kit load or a bad "thru" cable is the most common cause of load match specification failure.
If the load and cable performance are independently verified, then suspect the analyzer test port coupler, step attenuator, or the test receiver at the bad port.
To troubleshoot, refer to "Checking the Receiver Group" on page 4-49 or to "Checking the Signal Separation Group" on page 4-45.

Figure A-5 Typical $\mathbf{E}_{\mathbf{L F}} / \mathbf{E}_{\mathbf{L R}}$

Reflection Tracking ($\mathbf{E}_{\mathbf{R F}}$ and $\mathbf{E}_{\mathbf{R R}}$)

Reflection tracking is the difference between the frequency response of the reference path (R1 or R2path) and the frequency response of the reflection test path (A or B input path). These error terms are characterized by measuring the reflection ($\mathrm{S}_{11}, \mathrm{~S}_{22}$) of the open and the short during the measurement calibration.

All reflection measurements are affected by the reflection tracking errors.

Typical Cause of Failure

The calibration kit open or short is the most common cause of reflection tracking specification failure.
If the open or short performance has been independently verified, suspect the following:

- If both E_{RF} and E_{RR} fail
- suspect the analyzer switch splitter
- If one of the track term specification fails
- suspect the coupler, step attenuator, or the test receiver of the failed port

To troubleshoot, refer to "Checking the Receiver Group" on page 4-49 or to "Checking the Signal Separation Group" on page 4-45.

Figure A-6 Typical $\mathbf{E}_{\text {RF }} / \mathbf{E}_{\text {RR }}$

Transmission Tracking ($\mathbf{E}_{\mathbf{T F}}$ and $\mathbf{E}_{\mathbf{T R}}$)

Transmission tracking is the difference between the frequency response of the reference path (including the R input) and the frequency response of the transmission test path (including the A or B input) while measuring transmission. The response of the test port cables is included. These terms are characterized by measuring the transmission $\left(\mathrm{S}_{21}, \mathrm{~S}_{12}\right)$ of the "thru" configuration during the measurement calibration.
All transmission measurements are affected by transmission tracking errors.

Typical Cause of Failure

The test port cable is the most common cause of transmission tracking specification failure.
If the test port cable performance has been independently verified, suspect the following:

- If both E_{TF} and E_{TR} fail
- suspect the analyzer switch splitter
- If one of the track term specification fails
- suspect the coupler, step attenuator, or the test receiver of the failed port

To troubleshoot, refer to "Checking the Receiver Group" on page 4-49 or to "Checking the Signal Separation Group" on page 4-45.

Figure A-7 Typical $\mathbf{E}_{\mathbf{T F}} / \mathbf{E}_{\mathbf{T R}}$

Isolation ($\mathbf{E}_{\mathbf{X F}}$ and $\mathbf{E}_{\mathbf{X R}}$)

Isolation, or crosstalk, is the uncorrected forward and reverse isolation error terms that represent leakage between the test ports and the signal paths. The isolation error terms are characterized by measuring transmission $\left(\mathrm{S}_{21}, \mathrm{~S}_{12}\right)$ with loads attached to both ports during the measurement calibration.isolation errors affect transmission measurements primarily where the measured signal level is very low.

The measurements most affected by isolation error terms are DUTs with large insertion loss. Since these terms are low in magnitude, they are usually noisy (not very repeatable).

Typical Cause of Failure

A loose cable connection or leakage between components in the test set are the most likely cause of isolation problems.

After verifying the cable and its connections, suspect the analyzer switch splitter, step attenuator, coupler, or receivers, and associated cabling.
To troubleshoot, refer to "Checking the Receiver Group" on page 4-49 or to "Checking the Signal Separation Group" on page 4-45.

Figure A-8 Typical $\mathbf{E}_{\mathbf{X F}} / \mathbf{E}_{\mathbf{X R}}$ with 10 Hz Bandwidth

B Option Enable Utility

Information in This Appendix

NOTE For more in-depth information on option enable, refer to the embedded help in

 the analyzer.
Appendix B at-a-Glance

Section Title	Summary of Content	Start Page
Accessing the Option Enable Utility	How to access the option enable utility within the analyzer's menu system.	Page B-3
Installing or Removing Options	How to add or remove options from the analyzer's option list.	Page B-3
Repairing and Recovering Option Data	How to recover lost option data.	Page B-4
Installing or Changing a Serial Number	How to install a new serial number for the analyzer or change the existing serial number.	Page B-5

Accessing the Option Enable Utility

To start the option enable application:

- On the System menu, point to Service, and then click Option Enable.
- The dialog box illustrated in Figure B-1 is displayed.

NOTE Some applications require a keyword that is provided by Agilent. If you do not have the required keyword, contact Agilent for assistance. Refer to "Contacting Agilent" on page 2-10.

Figure B-1 Option Enable Dialog Box

Installing or Removing Options

There are two types of options:

- Hardware option: This option involves some physical change to the analyzer. The option enable utility allows you to load the software needed for the changes.
- Software option: This option involves loading software to initialize your new option. The option enable utility is part of this process.
Use the Select Desired Option box to select an option to install or remove from your analyzer. If the option is not available in the list box, select Enter Unlisted Option. A dialog box will allow you to enter the option number. Enter the option and follow the instructions on the display.

Repairing and Recovering Option Data

License, option, and model number data are stored in an EPROM on the A10 frequency reference board and written into the gen. lic file on the hard disk drive. If the data stored in either of these items is lost, it can be recovered from the other item.

If the data on both the hard disk drive and the frequency reference board is lost, it can not be recovered. Contact Agilent for assistance. Refer to "Contacting Agilent" on page 2-10.

Recovery of Data After Repair

- If the A10 frequency reference board is replaced, use the Repair selection to recover data that has been lost as a result of the repair:

1. Select Repair from the Option Enable menu bar (see Figure B-1).
2. Click the Freq Ref board has been replaced check box.
3. Click Begin Repair. The data is written from the gen.lic file into the EPROM.

- If the hard disk drive is replaced, a new gen. lic file is automatically created when the Network Analyzer application starts, by retrieving the data from the EPROM.

Recovery of Data if Option or Model Numbers are Incorrect

If the analyzer option or model numbers are not listed correctly on the analyzer display, in either the Option Enable Dialog Box or the About Network Analyzer display, you should regenerate the options license file, gen.lic:

1. Exit the Network Analyzer application.
2. Remove (or rename) the existing gen.lic file:
a. Open Windows Explorer and navigate to $\mathrm{C}: \backslash$ Program Files \backslash Agilent \backslash Network Analyzer.
b. Delete (or rename) gen.lic.
3. Exit the Windows Explorer application.
4. Open the Network Analyzer application. The application will generate a new gen.lic file when it starts.
5. Check the option listing:
a. On the System menu, point to Service, and then click Option Enable, or
b. On the Help menu, click About Network Analyzer.
6. If the options are still not listed correctly, contact Agilent for assistance. Refer to "Contacting Agilent" on page 2-10.

Installing or Changing a Serial Number

It is necessary to reinstall the instrument serial number if the A16 test set motherboard is replaced.

IMPORTANT Use extreme care when entering the serial number, as only one attempt is allowed.

1. To change a serial number, select Change Serial from the Option Enable menu bar (see Figure B-1). The current serial number is displayed. If no serial number has previously been entered, the word "NONE" will be displayed.
2. Type the new serial number into the space provided, click Serial.

NOTE To change an incorrect serial number, a clear-code password is required. Contact Agilent to obtain the clear-code. Refer to "Contacting Agilent" on page 2-10.

C Firmware Upgrades

Information in This Appendix

This appendix provides instructions for installing firmware upgrades in your PNA series microwave network analyzer.

Appendix C at-a-Glance

Section Title	Summary of Content	Start Page
Downloading from the Internet	How to download firmware upgrades from the Internet.	Page C-2
Downloading Using Option 099, Firmware Upgrade	How to download firmware upgrades from a CD-ROM.	Page C-3

How to Check the Current Firmware Version

1. With the Network Analyzer application running, click Help, About Network Analyzer.

A dialog box showing the current installed Application Code Version is displayed.
2. To determine if a firmware update is available, proceed to "Downloading from the Internet."

Downloading from the Internet

If your network analyzer is connected to the Internet, there are two methods available for checking the availability of, and downloading, new firmware:

- Download directly from: http://www.agilent.com/find/pna. (Select your analyzer's model number in this website to view available upgrades.)
- On the System menu, point to Service, and then click AgileUpdate. AgileUpdate compares the firmware revision currently installed in your network analyzer to the latest version available and assists you in downloading and installing the most recent version. This is available only on analyzers with firmware revision A.01.20 and higher.

Downloading Using Option 099, Firmware Upgrade

Option 099 provides a firmware upgrade kit containing a CD-ROM that contains firmware upgrades for your network analyzer. Refer to "Option 099, Firmware Upgrade" on page 2-5 for additional information.

Two procedures are provided for updating the analyzer firmware using the upgrade kit:

- Downloading from a USB CD Drive Connected to the Analyzer
- Downloading from a Shared CD Drive Over the LAN

Installation Requirements

- The network analyzer must be in proper working condition prior to installing this option. Any necessary repairs must be made before proceeding with this installation.
- This installation does not require removal of the analyzer's protective outer covers.
- The analyzer must be powered up and operating to perform this installation.

Downloading from a USB CD Drive Connected to the Analyzer

- A mouse and a keyboard must be connected to the network analyzer.
- A CD drive must be connected to the network analyzer. This procedure has been verified using the CD drive specified in "USB Accessories" on page 6-59. It has not been verified using other USB CD drives.

Installation Procedure

1. Exit all applications; the analyzer display should show the PC desktop icons.
2. Insert the upgrade CD into your analyzer's CD drive.
3. Click My Computer, and then click your analyzer's CD drive.
4. On the CD drive menu, click on the program file listed to begin the installation.
5. Follow the instructions as they appear. Select your network analyzer's hard disk drive as the destination for the files being installed.

Downloading from a Shared CD Drive Over the LAN

- If your PC and your network analyzer are both connected to the same LAN, proceed to "Downloading Over the LAN."
- If your PC and your network analyzer are NOT connected to a LAN, you can connect them using a crossover cable. A crossover cable can be purchased or can be constructed from a standard LAN cable. Refer to "Constructing a Crossover Cable" on page 4-26 for details.

Downloading Over the LAN

This procedure assumes that the network analyzer and the computer are both connected to the same LAN or are connected using a crossover cable.

From your PC:

1. Insert the upgrade CD in your PC's CD drive.
2. Right click on Network Neighborhood, and then click Properties. Record the Computer Name here: \qquad . Click Cancel.
3. Double-click My Computer. Click on your PC's CD drive. On the File menu, click Sharing. Under the Sharing tab, click Share as. Type a Share Name and record it here: \qquad . Do not use the default letter that is displayed. Click Cancel to close the dialog box.
From your network analyzer:
4. On the PC desktop, click My Computer, click Tools, and then click Map Network Drive.
5. The network analyzer will choose the next available drive letter. Record this drive letter here: \qquad .
6. In the Map Network Drive window, click the Folder box (this is the Path box on the PC) and type the path of your PC's CD drive in the form
computername \backslash sharename. You recorded the computername in step 2 and the sharename in step 3.

> If you are logged onto the analyzer using the same logon as for your PC, it is not necessary to select "Connect using a different user name". If, however, you are not logged onto your analyzer using the same logon or you prefer to connect under a different user name, click this hyperlink and type the user name and password. If the user name is in a different domain, use the format: domain\username.
7. To automatically connect to the shared drive each time you log on, check Reconnect at logon.
8. Click Finish.
9. Your PC's CD drive should now be visible on the display as the drive letter you recorded in step 5 with the share name you assigned in step 3.
10. A window listing the contents of the CD installed in your PC's CD drive is displayed.
11. On the CD drive menu, click on the program file listed to begin the installation.
12. Follow the instructions as they appear. Select your network analyzer's hard disk drive as the destination for the files being installed.

D Operating System Recovery

Information in This Appendix

Appendix D at-a-Glance

Section Title	Summary of Content	Start Page
Overview	Overview of the analyzer's hard disk drive file storage system and the impact of the operating system recovery procedure on that file storage system.	Page D-3
System Recovery Procedure	Step-by-step instructions for how to restore the operating system on your analyzer.	Page D-4

Overview

This recovery procedure will completely restore the operating system of the PNA series network analyzer to the original factory condition. It will not function if the hard drive is damaged.

If you have made an emergency repair disk, you may be able to recover from some Windows system problems without the loss of data. Refer to Windows 2000 Help or contact your systems administrator.
Use this procedure for the following types of situations:

- If you are recovering from a corrupted operating system.
- If you have security concerns where all previous usage remnants need to be eliminated.
- If the network analyzer must be in a known configuration, such as for rental companies.

The hard drive in the PNA series network analyzer has two partitions (drives):

- C: drive-contains the Windows 2000 operating system (NTFS format). This is the normally used partition and it contains all the programs and other needed files.
- D: drive-is the Disaster Recovery Partition. It contains a compressed image of the C: drive as it existed when shipped from the factory, plus its support files. It may also contain other items such as drivers or firmware. DO NOT USE THIS DRIVE FOR NORMAL DAY-TO-DAY USE.

IMPORTANT The recovery procedure will erase the entire C: drive and the following information will be lost:

- all changes and additions made to the network analyzer since it's purchase (except options)
- all user accounts and passwords
- all added programs
- all saved instrument states
- all user configurations and Windows settings

The above listed information can be saved by copying it to a floppy disk or to a folder on the D : drive; the D : drive will not be affected by the restoration process. In addition, factory instrument calibration will not be affected if no changes have been made since the original factory calibration. If changes have been made through the service routines, copy all files that are prefixed with mxcalfile_ in the C:/Program Files/Agilent/Network Analyzer directory to the D:/Calfiles directory. Permanent instrument options should not be lost.

System Recovery Procedure

\author{

1. Click Start, Shutdown, and then Restart.
}

NOTE Normally, you can boot from the D: drive (recovery partition) which will allow you to erase and restore the C: drive. This is an available selection during the normal boot-up process. If this boot-up selection process is not functioning due to a damaged operating system, proceed to "If the Operating System Does Not Boot From the Hard Disk Drive" on page D-5.
2. After the Agilent logo displays on the screen, you will have several seconds to select an alternative operating system from the default of Windows 2000.
a. Select the Recovery partition. A brief "splash" screen will appear indicating that you are booting from the recovery partition.
3. The analyzer will display a warning about proceeding and give you two chances to abort. After the second warning, if not aborted, the restoration process begins immediately.
Restoration takes from 30 to 60 minutes. There is no user interaction required. Near the end of the process, the network analyzer will reboot several times. The network analyzer application may start before the process is complete. Do not attempt to use the analyzer until the network analyzer application is running and all activity has been stopped for at least one minute.

Once the operating system is completely recovered, you can restore any files that you saved. The mxcalfile_files that were stored on the D:/Calfiles directory will be restored automatically. Other files must be moved or copied manually.

> If the network analyzer options are lost, rename the C:/Program Files/Agilent/Network Analyzer/gen.lic file to gen.bak, and then restart the network analyzer application. This should regenerate the options automatically and recreate the gen.lic file.

After recovery, you may notice that, upon power up, the system pauses for 30 seconds to allow selection of the operating system. This time delay can be decreased to 5 seconds. To do this:

1. Click Start, point to Settings, and then click Control Panel.
2. Double-click System.
3. In the System Properties window, click on the Advanced tab, and then click Startup and Recovery.
4. Modify Display list of operating systems for xx seconds. where xx is the desired time value. The factory recommended setting is 5 seconds.
5. Click OK in the Startup and Recovery window. Click OK in the System Properties window. Close the Control Panel window.

If the Operating System Does Not Boot From the Hard Disk Drive

If the network analyzer is unable to boot from the hard disk drive, then you must make a DOS boot disk. To make this disk, you will need:

- a floppy disk
- a computer that is currently running DOS or Windows ${ }^{\circledR}$ 95/98/ME/XP. Windows ${ }^{\circledR}$ NT or Windows ${ }^{\circledR} 2000$ cannot be used.

To create the DOS boot disk:

1. Right click on the A: drive.
2. Select Format.
3. Select Make System Disk (or copy system files).

To boot from the DOS boot disk:
4. Insert the newly created system disk into the network analyzer floppy disk drive and restart the operating system. The network analyzer should detect this disk and boot from it. If not, proceed to "If the Operating System Does Not Boot From the Floppy Disk Drive" on page D-6.
5. At the DOS prompt (A: $\backslash>$) type CD C: and press Enter. You are really changing to the D: drive because a DOS operating system does not recognize the NTFS format and assumes the first valid drive is C :.
6. Type Autoexc.bat and press Enter.
7. Now that the analyzer system has booted, continue with the restoration procedure at step 2 of "System Recovery Procedure" on page D-4.

[^8]
If the Operating System Does Not Boot From the Floppy Disk Drive

You may have to change the network analyzer Bios settings to have it scan the floppy disk drive before booting from the hard disk drive. Due to Bios revisions, the exact procedure may vary slightly from the following:

1. Attach a keyboard to the network analyzer and restart the network analyzer.
2. When the Agilent logo appears, press function key F2, on the keyboard, several times. The Bios menu will appear after several seconds.
3. Using the keyboard arrows, select Boot. Use the keyboard to edit the file to select booting from the floppy disk drive before attempting to boot from the hard disk drive.

NOTE Once the restoration process is complete and the analyzer is functioning properly, remove the floppy disk and use this same procedure to change back to booting from the hard disk drive. If you do not do this, an error will result each time the analyzer is powered up with a floppy disk installed.
4. Select Save, and then Exit.
5. Now that the Bios has been changed to allow the system to detect the DOS boot disk in the floppy disk drive, continue with the procedure at step 5 of "If the Operating System Does Not Boot From the Hard Disk Drive" on page D-5.

Index

Numerics

1284-C port

rear panel connector, 5-30
troubleshooting, 4-22
30-dB fixed attenuators
illustrated, 6-21, 6-31, 6-38, 6-47, 6-50
part number, 6-20
35 dB step attenuators
operation, 5-18
35-dB step attenuators
illustrated, 6-35, 6-41
part number, 6-34, 6-39, 6-48
60 dB step attenuators
operation, 5-18
60-dB step attenuators
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48

A

A channel
attenuator
removal and replacement, 7-68
troubleshooting, 4-29
typical power output, 4-45
A receiver module
troubleshooting, 4-50

Atrace

troubleshooting, 4-29, 4-32
A1 keypad assembly
illustrated, 6-11
operation, 5-28
part number, 6-10
removal and replacement illustrated, 7-13
procedure, 7-12
test, 4-17, 4-19
test values, 4-18
troubleshooting, 4-17
A2 display assembly
illustrated, 6-11
operation, 5-28
part number, 6-10
removal and replacement
illustrated, 7-13
procedure, 7-12
troubleshooting, 4-13, 4-17
A3 front panel interface board
illustrated, 6-11
operation, 5-28
part number, 6-10
removal and replacement illustrated, 7-13
procedure, 7-12
troubleshooting, 4-13, 4-17
A4 power supply assembly
illustrated, 6-13, 6-17
operation, 5-31
part number, 6-12, 6-16
removal and replacement, 7-16
illustrated, 7-17
troubleshooting, 4-7
A6 SPAMboard
illustrated, 6-13, 6-17
operation
analog, 5-23
digital, 5-29
part number, 6-12, 6-16
removal and replacement, 7-18
illustrated, 7-19
troubleshooting, 4-50
A8 fractional-N synthesizer board
illustrated, 6-13, 6-17
operation, 5-8
part number, 6-12, 6-16
removal and replacement, 7-18
illustrated, 7-19
test nodes, 4-36
troubleshooting, 4-41
band 1, 4-41
bands $3-25,4-42$
A9 fractional-N synthesizer board operation, 5-24
removal and replacement, 7-18
illustrated, 7-19
test nodes, 4-38
troubleshooting, 4-52
band 1, 4-52
bands 3-25, 4-53
A10 frequency reference board
illustrated, 6-13, 6-17
operation, 5-9
part number, 6-12, 6-16
removal and replacement, 7-18
illustrated, 7-19
test nodes, 4-35
troubleshooting, 4-40, 4-41, 4-51
A11 phase lock board
illustrated, 6-13, 6-17
operation, 5-10
part number, 6-12, 6-16
removal and replacement, 7-20
illustrated, 7-21
test nodes, 4-35
A12 source 20
illustrated, 6-13, 6-17
operation, 5-10
part numbers, 6-12, 6-16
removal and replacement, 7-22
illustrated, 7-23
test nodes, 4-34

A13 frequency offset receiver assembly
 operation, 5-24

A13 phase lock receiver board removal and replacement, 7-24 illustrated, 7-25
A14 system motherboard
illustrated, 6-13, 6-17
operation, 5-28, 5-30, 5-31
part number, 6-12, 6-16
removal and replacement, 7-26
illustrated, 7-27
troubleshooting, 4-10, 4-12
voltage checks, 4-8

A15 CPU board

illustrated, 6-13, 6-17
operation, 5-29
part numbers, 6-12, 6-16
removal and replacement, 7-28
illustrated, 7-29
troubleshooting, 4-10, 4-13, 4-21
A16 test set motherboard
illustrated, 6-21
operation, 5-12
part number, 6-20
removal and replacement, 7-30
illustrated, 7-31
test nodes, 4-36, 4-37, 4-38
troubleshooting, 4-36, 4-37, 4-38, 4-49, 4-50

A17 LOMA 10

illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement illustrated, 7-33 procedure, 7-32
troubleshooting, 4-42

A18 MA 20

illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement illustrated, 7-35 procedure, 7-34
troubleshooting, 4-44

A19 splitter

removal and replacement
illustrated, 7-37
procedure, 7-36

A20 LODA

illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement
illustrated, 7-39
procedure, 7-38

Index

troubleshooting, 4-44

A21 SOMA 50

illustrated, 6-21
operation, 5-11
part number, 6-20
removal and replacement
illustrated, 7-41
procedure, 7-40
A22 switch splitter
illustrated, 6-21
operation, 5-9, 5-16
part number, 6-20
removal and replacement
illustrated, 7-43
procedure, 7-42
troubleshooting, 4-46, 4-47
A23 channel R1 detector, Option 014/081
illustrated, 6-21, 6-44
operation, 5-17
part number, 6-20, 6-42
removal and replacement
illustrated, 7-45, 7-47
procedure, 7-44, 7-46
A24 channel R2 detector
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement
illustrated, 7-45, 7-47
procedure, 7-44, 7-46
A25 test port 1 coupler
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement
illustrated, 7-49
procedure, 7-48
troubleshooting, 4-46, 4-47
A26 test port 2 coupler
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement illustrated, 7-49
procedure, 7-48
troubleshooting, 4-46, 4-47
A27 channel Afirst converter
illustrated, 6-21
part number, 6-20
removal and replacement
illustrated, 7-51
procedure, 7-50
troubleshooting, 4-49
A28 channel R1 first converter
illustrated, 6-21
part number, 6-20
removal and replacement
illustrated, 7-51
procedure, 7-50
troubleshooting, 4-49
A29 channel R2 first converter
illustrated, 6-21
part number, 6-20
removal and replacement
illustrated, 7-51
procedure, 7-50
troubleshooting, 4-49
A30 channel B first converter
illustrated, 6-21
part number, 6-20
removal and replacement
illustrated, 7-51
procedure, 7-50
troubleshooting, 4-49
A31 channel A receiver module
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement
illustrated, 7-53
procedure, 7-52
troubleshooting, 4-50
A32 channel R1 receiver module
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement
illustrated, 7-53
procedure, 7-52
troubleshooting, 4-50
A33 channel R 2 receiver module
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement
illustrated, 7-53
procedure, 7-52
troubleshooting, 4-50
A34 channel B receiver module
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement illustrated, 7-53 procedure, 7-52
troubleshooting, 4-50
A35 receiver motherboard
illustrated, 6-21
operation, 5-23
part number, 6-20
removal and replacement illustrated, 7-55
procedure, 7-54
troubleshooting, 4-50

A36 port 1 step attenuator
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
operation, 5-18
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
removal and replacement
illustrated, 7-57
procedure, 7-56
troubleshooting, 4-46, 4-47
A37 port 2 step attenuator
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
operation, 5-18
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
removal and replacement
illustrated, 7-57
procedure, 7-56
troubleshooting, 4-46, 4-47
A38 port 1 bias tee
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
operation, 5-18
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
removal and replacement
illustrated, 7-59
procedure, 7-58
troubleshooting, 4-48
A39 port 2 bias tee
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
operation, 5-18
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
removal and replacement
illustrated, 7-59
procedure, 7-58
troubleshooting, 4-48
A40 floppy disk drive
illustrated, 6-53
operation, 5-30
part numbers, 6-52
removal and replacement
illustrated, 7-61
procedure, 7-60
A41 hard disk drive
illustrated, 6-56
location of, 6-51
operation, 5-30
part numbers, 6-56
removal and replacement
illustrated, 7-64
procedure, 7-62
A43 35 dB step attenuator
operation, 5-18
removal and replacement

Index

illustrated, 7-69
procedure, 7-68
$35-\mathrm{dB}$ receiver illustrated, 6-35
part number, 6-34, 6-48
A44 35 dB step attenuator
operation, 5-18
removal and replacement
illustrated, 7-69
procedure, 7-68
35-dB receiver
illustrated, 6-35
part number, 6-34, 6-48
A45 and A46 switch (option 081)
troubleshooting, 4-54
A45 and A46 switches (option 081)
troubleshooting, 4-54
A45 channel R1 transfer switch
removal and replacement illustrated, 7-71
procedure, 7-70
operation, 5-24
A45 reference transfer switch, Option 081
illustrated, 6-44, 6-47, 6-50
part number, 6-42, 6-45, 6-48
A46 channel R1 transfer switch
removal and replacement
illustrated, 7-71
procedure, 7-70
operation, 5-24
A46 reference transfer switch, Option 081
illustrated, 6-44, 6-47, 6-50
part number, 6-42, 6-45, 6-48
accessories
CD-RW drive, 2-6
in operator's check, 3-11
in test port cable checks, 3-13
USB
part numbers, 6-59
USB hub, 2-6
accuracy
dynamic accuracy test, 3-35
frequency test, 3-31
adapters
required for servicing, 2-8
adjustments
frequency
at $10 \mathrm{MHz}, 3-49$
at $3.8 \mathrm{MHz}, 3-50$
LO power, 3-47
receiver calibration, 3-44
source calibration, 3-43
system, 3-1, 3-42, B-1, C-1 getting ready, 3-4
administrator password
Agilent, 7-67

Agilent
administrator password, 7-67
contacting, 2-10
support, 2-11
airline handling precautions, 3-24
analyzer
block diagram
configurable test set,
Option 014, 5-19
digital control group, 5-27
digital processor group, 5-27
receiver group, 5-22, 5-25
signal separation group, 5-17
source group, 5-7
covers
illustrated, 6-55
part numbers, 6-54
removal and replacement, 7-6
display lamp
replacement illustrated, 7-15
replacement procedure, 7-14
external replaceable parts
illustrated, 6-55
part numbers, 6-54
feet
illustrated, 6-55
part numbers, 6-54
frequency range and max ouput power, 5-4
frequency reference board assembly, 5-9
front panel interconnects, 5-28
functional groups, 5-3
digital control, 5-5
digital processing, 5-5
frequency offset group, 5-4
power supply, 5-5
receiver group, 5-4
signal separation, 5-4
synthesized source, 5-4
internal replaceable parts
illustrated, 6-53
part numbers, 6-52
miscellaneous replaceable parts
part numbers, 6-57, 6-59
mounting in equipment rack, 2-6
operation
A13 frequency offset receiver assembly, 5-24
A45 and A46 reference transfer switches, 5-24
A9 fractional-N synthesizer board, 5-24
bias tees, 5-18
configurable test set, Option 014, 5-18

CPU board, 5-29
data acquisition subgroup, 5-29
detectors, 5-17
digital control group, 5-26
digital processor group, 5-26
display assembly, 5-28
floppy disk drive, 5-30
fractional-N synthesizer board assembly, 5-8, 5-9
frequency offset group, 5-24
front panel interface board, 5-28
front panel subgroup, 5-28
hard disk drive, 5-30
keypad assembly, 5-28
LO reject filter board, 5-21
LODA, 5-9
main RAM, 5-29
phase lock board assembly, 5-10
processing subgroup, 5-29
receiver group, 5-21
receiver modules, 5-21
receiver motherboard, 5-23
receiver step attenuators, 5-18
signal separation group, 5-16
SOMA 50, 5-11
source 20 assembly, 5-10
source group, 5-6
source step attenuators, 5-18
SPAM board-analog, 5-23
SPAM board-digital, 5-29
splitter assembly, 5-9
switch splitter 50, 5-16
test port couplers, 5-17
test set motherboard, 5-12
USB hub, 5-30
options, 2-3
rear panel
interconnects, 5-10, 5-12, 5-30
rear panel replaceable parts
illustrated, 6-51
part numbers, 6-51
strap handle
illustrated, 6-55
part number, 6-54
system block diagram, 5-3
system operation
theory of, 5-3
warmup time, 3-4
ANSI/NCSL Z540-1-1994
verification, 3-8
ANSI/NCSL Z540-1-1994
non-type verification, 3-9

assemblies

location of part numbers, 6-8
rebuilt-exchange
procedure, 6-5
rebuilt-exchange program, 6-5
replacement
cautions about, 7-3
list of procedures, 7-4
sequence, 6-4, 7-3
warnings about, 7-3
attenuator bracket
illustrated, 6-29
part number, 6-28
attenuators
receiver
operation, 5-18
required for servicing, 2-8
source
operation, 5-18
step, $35-\mathrm{dB}$ receiver
illustrated, 6-35, 6-41
part number, 6-34, 6-39, 6-48
step, 60-dB source
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
attenuators, fixed, $\mathbf{3 0 - d B}$
illustrated, 6-21
part number, 6-20
AUX I/O connector
pin assignments, 5-15
rear panel, 5-12

B

B channel

attenuator
removal and replacement, 7-68
troubleshooting, 4-29
typical power output, 4-46
B receiver module
troubleshooting, 4-50
B trace
troubleshooting, 4-29, 4-32
B1 fan
removal and replacement, 7-72
band modes
source group
configurations, 5-6
operation, 5-6
troubleshooting
band 1, 4-41
band 1 for A9, 4-52
band 2, 4-41, 4-52
bands 3-25, 4-42, 4-53
band related failure, 4-31
battery disposal, 1-6
before applying power, 1-3

bias tee

port 1
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
port 2
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
bias tee bracket
illustrated, 6-29
part number, 6-28
bias tee, port 1
operation, 5-18
removal and replacement
illustrated, 7-59
procedure, 7-58
troubleshooting, 4-48
bias tee, port 2
operation, 5-18
removal and replacement
illustrated, 7-59
procedure, 7-58
troubleshooting, 4-48

block diagram

configurable test set, Option 014, 5-19
digital control group, 5-27
digital processor group, 5-27
receiver group, 5-22, 5-25
signal separation group, 5-17
source group, 5-7
bottom assembly
replaceable cables, flexible illustrated, 6-25
part numbers, 6-24
replaceable cables, ribbon
illustrated, 6-27
part numbers, 6-26
replaceable cables, wrapped
illustrated, 6-27
part numbers, 6-26
bottom assembly, hardware
illustrated, 6-29
part numbers, 6-28
bottom assembly, no hardware options
replaceable parts
illustrated, 6-21
part numbers, 6-20
bottom assembly, Option 014
replaceable cables
illustrated, 6-33
part numbers, 6-32, 6-37
bottom assembly, Option 014/081
replaceable cables
part numbers, 6-42, 6-43
replaceable parts
illustrated, 6-44
part numbers, 6-42
bottom assembly, Option UNL
replaceable parts
illustrated, 6-31
part numbers, 6-30
bottom assembly, Option UNL/014
replaceable cables
illustrated, 6-38
part numbers, 6-36
replaceable parts
illustrated, 6-38
part numbers, 6-36
bottom assembly, Option UNL/014/016
replaceable cables
illustrated, 6-41
part numbers, 6-39, 6-40
replaceable parts
illustrated, 6-41
part numbers, 6-39
bottom assembly,
Option UNL/014/016/080/081
replaceable cables
illustrated, 6-50
part numbers, 6-48, 6-49
replaceable parts
illustrated, 6-50
bottom assembly,
Option UNL/014/0160/80/081
replaceable parts part numbers, 6-48
bottom assembly,
Option UNL/014/080/081
replaceable cables
illustrated, 6-47
part numbers, 6-45, 6-46
replaceable parts
illustrated, 6-47
part numbers, 6-45
bottom assembly, Option UNL014/081
replaceable cables illustrated, 6-44
bottom assembly, Option UNL/016
replaceable cables
illustrated, 6-35
part numbers, 6-34
replaceable parts illustrated, 6-35 part numbers, 6-34
bottom assembly, standard
replaceable cables, semi-rigid illustrated, 6-23
part numbers, 6-22

Index

bracket

attenuator
illustrated, 6-29
part number, 6-28
bias tee
illustrated, 6-29
part number, 6-28
detector
illustrated, 6-29
part number, 6-28
broadband failure, 4-31, 4-39

C

cable
substitution, 3-23
test port
checks, $3-10,3-13,3-14,3-15$, 3-16, 3-18
connector repeatability failure, 3-19
insertion loss failure, 3-15
magnitude and phase stability failure, 3-17
return loss failure, 3-14

cables

GPIB
part numbers, 6-57
in bottom assembly, Option 014
illustrated, 6-33
part numbers, 6-32, 6-37
in bottom assembly,
Option 014/081
part numbers, 6-42, 6-43
in bottom assembly,
Option UNL/014
illustrated, 6-38
part numbers, 6-36
in bottom assembly,
Option UNL/014/016
illustrated, 6-41
part numbers, 6-39, 6-40
in bottom assembly,
Option UNL/014/016/080/ 081
illustrated, 6-50
part numbers, 6-48, 6-49
in bottom assembly,
Option UNL/014/080/081
illustrated, 6-47
part numbers, 6-45, 6-46
in bottom assembly,
Option UNL/014/081
illustrated, 6-44
part numbers, 6-46
in bottom assembly,
Option UNL/016
illustrated, 6-35
part numbers, 6-34
in bottom assembly, standard illustrated, 6-23
in top assembly, Option 080
illustrated, 6-19
part numbers, 6-18
in top assembly, without Option 080
part numbers, 6-14
in top assembly, without Option 080
illustrated, 6-15
required for servicing, 2-8
cables, flexible
in bottom assembly
illustrated, 6-25
part numbers, 6-24
cables, ribbon
in bottom assembly
illustrated, 6-27
part numbers, 6-26
cables, semi-rigid
in bottom assembly part numbers, 6-22
cables, wrapped
in bottom assembly
illustrated, 6-27
part numbers, 6-26
calibration
certificate and data, Option UK6, 2-11
certificate of, 3-7
coefficients test, 3-34
kits, 2-8, 3-7
substitution, 3-23
receiver, 3-44
source, 3-43
care of connectors, 3-5
caution, 1-3
CD-RW drive, 2-6
CE mark, 1-6
certificate of calibration, 3-7
certificate of calibration, Option UK6, 2-11
changing
a serial number, B-5
channel A
troubleshooting, 4-29, 4-45
typical power output, 4-45
channel A receiver module
troubleshooting, 4-50
channel B
troubleshooting, 4-29, 4-45
typical power output, 4-46
channel B receiver module
troubleshooting, 4-50

channel R1

troubleshooting, 4-29
channel R1 receiver module
troubleshooting, 4-50
channel R2
troubleshooting, 4-29
channel R2 receiver module
troubleshooting, 4-50
checks
attenuator range, 3-10
cable
connector repeatability, failure of, 3-19
insertion loss, failure of, 3-15
magnitude and phase stability,
failure of, 3-17
return loss, failure of, 3-14
test port cables, 3-10, 3-13
operator's, 3-10
accessories used in, 3-11
dialog box, 3-11
failure of, 3-11
performing, 3-10
Port 1, 3-11
Port 2, 3-11
preliminary, 3-10
switch repeatability, 3-10
system, 3-1, B-1, C-1
getting ready, 3-4
test port cable
accessories used in, 3-13
connector repeatability, 3-18
insertion loss, 3-15
magnitude and phase stability, 3-16
performing, 3-13
return loss, 3-14
COM, A-7
compression test, receiver, 3-32
configurable test set, Option 014, 2-3
block diagram, 5-19
operation, 5-18
configuration
high dynamic range, 5-19
diagram, 5-20
Option 014, 5-18
connector
care
principles of, 3-5
quick reference, 3-5
protective end caps
part numbers, 6-57
repeatability check
failure of, 3-19
of test port cables, 3-18
connector repeatability
check
test port cables, 3-18
connectors
care of, 3-5
front panel, 5-28
Probe Power, 5-28
USB, 5-28
rear panel, 5-10, 5-12, 5-30
1284-C, 5-30
AUX I/O, 5-12, 5-15
Display, 5-30
EXT 10 MHz REF IN, 5-10
EXT 10 MHz REF OUT, 5-10
GPIB, 5-30
HANDLER I/O, 5-12, 5-14
PARALLEL, 5-30
RS-232, 5-30
SERIAL, 5-30
TEST SET I/O, 5-12, 5-13
TRIG IN, 5-12
TRIG OUT, 5-12
USB, 5-30
VGA, 5-30
contacting Agilent, 2-10
controllers
troubleshooting with, 4-23

coupler

nut
illustrated, 6-29
part number, 6-28
port 1
illustrated, 6-21
part number, 6-20
troubleshooting, 4-47
port 2
illustrated, 6-21
part number, 6-20
troubleshooting, 4-47
covers, analyzer
illustrated, 6-55
part numbers, 6-54
removal and replacement illustrated, 7-7
procedure, 7-6
CPU board
illustrated, 6-13, 6-17
operation, 5-29
part numbers, 6-12, 6-16
removal and replacement illustrated, 7-29
procedure, 7-28
troubleshooting, 4-13, 4-21

cross talk

system test, 3-35
test port test, 3-35
cross-over cable, LAN, 4-26
CSA mark, 1-6
data acquisition and processing
subgroup, 5-26

data storage

floppy disk, 5-30
hard disk, 5-30
IDE, 5-30
data, option
recovering, B-4
repairing, B-4
DCOM, A-7
description
functional
digital control group, 5-5
digital processing group, 5-5
freqeuency offset group, 5-4
power supply group, 5-5
receiver group, 5-4
signal separation group, 5-4
synthesized source group, 5-4
detector
channel R1
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement
illustrated, 7-45, 7-47
removal and replacement procedure, 7-44, 7-46
channel R1, Option 014/081
illustrated, 6-44
part number, 6-42
channel R2
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement
illustrated, 7-45, 7-47
removal and replacement procedure, 7-44, 7-46

detector bracket

illustrated, 6-29
part number, 6-28
device connections
system verification, 3-26
digital control group
block diagram, 5-27
functional description of, 5-5
operation, 5-26
digital processing and control
functional group, 5-3
digital processing group
block diagram, 5-27
functional description of, 5-5
operation, 5-26
directivity
cause of failure, A-10
definition of, A-10
measurements affected by, A-10
display assembly
illustrated, 6-11
operation, 5-28
parts list, 6-10
removal and replacement
illustrated, 7-13
procedure, 7-12
troubleshooting, 4-13, 4-17
display inverter
removal and replacement
illustrated, 7-15
procedure, 7-14
display lamp
removal and replacement
illustrated, 7-15
procedure, 7-14
Display port
rear panel connector, 5-30
display test
running, 4-19
documentation
optional, iv
part numbers, 6-57
standard, iv
dynamic range, high configuration, 5-19

E

earth ground, 1-3
electrostatic discharge, See ESD
emissions requirements
German FTZ, 1-7
environment, operating
specifications, 3-4
verification, 3-4
equipment rack
horizontal spacing, 2-6
mounting analyzer in, 2-6
equipment, service test
required, 2-7
error terms
access to, A-6
via COM/DCOM commands, A-7
via front panel, A-6 via SCPI commands (using GPIB), A-7
cause of failure to, A-3
data, A-8
descriptions, A-8
directivity, A-10
flowgraph of one port, A-4
flowgraph of two port, A-5
identifying using flowgraphs, A-4
isolation, A-15
load match, A-12

Index

magnitude

affected by, A-3
monitoring over time, A-3
reflection tracking, A-13
shape affected by, A-3
source match, A-11
transmission tracking, A-14
using as diagnostic tool, A-3
using to aid troubleshooting, A-3
worse than typical values, A-9

ESD

protection, 1-5, 3-4, 4-3, 7-3, A-4
supplies
part numbers, 6-58
exchange
module
procedure, 6-5
rebuilt assemblies
program, 6-5
EXT 10 MHz REF IN connector rear panel, 5-10
EXT 10 MHz REF OUT connector
rear panel, 5-10
extender board
measurement points, 4-8
voltages, 4-8
external analyzer
replaceable parts
illustrated, 6-55
part numbers, 6-54
external monitor, 4-13

F

failure
band related, 4-31
broadband, 4-31, 4-39
of connector repeatability check, 3-19
of insertion loss check, 3-15
of magnitude and phase stability check, 3-17
of operator's check, 3-11
of return loss check, 3-14
of system verification, 3-27
flowchart, 3-27
single band, 4-31
single vs. broadband, 4-39
fan
removal and replacement, 7-72
troubleshooting, 4-12
feet
analyzer
illustrated, 6-55
part numbers, 6-54
firmware upgrade
downloading from the internet, C-2
installing using Option 099, C-3
Option 099, 2-5
first converter
channel A
illustrated, 6-21
part number, 6-20
removal and replacement illustrated, 7-51
removal and replacement illustrated, 7-51
removal and replacement procedure, 7-50
troubleshooting, 4-49
channel B
illustrated, 6-21
part number, 6-20
removal and replacement illustrated, 7-51
removal and replacement procedure, 7-50
troubleshooting, 4-49
channel R1
illustrated, 6-21
part number, 6-20
removal and replacement illustrated, 7-51
removal and replacement procedure, 7-50
troubleshooting, 4-49
channel R2
illustrated, 6-21
part number, 6-20
removal and replacement illustrated, 7-51
removal and replacement procedure, 7-50
troubleshooting, 4-49
fixed attenuators
30-dB
illustrated, 6-21
part number, 6-20
floppy disk drive
data storage, 5-30
illustrated, 6-53
operation, 5-30
part number, 6-52
removal and replacement
illustrated, 7-61
procedure, 7-60
flowgraph
of one port error terms, A-4
of two port error terms, A-5
using to identify error terms, A-4

Fourier transform, 2-3
fractional-N synthesizer
operation, 5-24
fractional-N synthesizer board
illustrated, 6-13, 6-17
operation, 5-8
part number, 6-12, 6-16
removal and replacement
illustrated, 7-19
procedure, 7-18
troubleshooting, 4-41
band 1, 4-41
bands 2-6, 4-42
fractional-N synthesizer board (A8)
test nodes, 4-36
fractional-N synthesizer board (A9)
troubleshooting, 4-52
band 1, 4-52
bands 2-6, 4-53
fractional-N synthesizer board option (A9)
test nodes, 4-38
frequency accuracy
test, 3-31
frequency adjustment
at $10 \mathrm{MHz}, 3-49$
at $3.8 \mathrm{MHz}, 3-50$
frequency offset
functional description of, 5-4
frequency offset (option 080) group
troubleshooting, 4-51
frequency offset group
operation, 5-24
frequency offset mode
Option 016, 2-4, 2-5
frequency range
and max output power, 5-4
frequency reference board
illustrated, 6-13, 6-17
operation, 5-9
part number, 6-12, 6-16
removal and replacement
illustrated, 7-19
procedure, 7-18
test nodes, 4-35
troubleshooting, 4-40, 4-41, 4-51
front panel
connectors
Probe Power, 5-28
USB, 5-28
interconnects, 5-28
knob
part number, 6-10
test, 4-19
troubleshooting, 4-17

LED board
illustrated, 6-29
part number, 6-28
operation, 5-28
speaker, 5-28
subgroup, 5-26
USB
troubleshooting, 4-17, 4-21
front panel assembly
removal and replacement
illustrated, 7-11
procedure, 7-10
replaceable parts
illustrated, 6-11 part numbers, 6-10
front panel interface board
illustrated, 6-11
operation, 5-28
part number, 6-10
removal and replacement
illustrated, 7-13
procedure, 7-12
troubleshooting, 4-13, 4-17
front panel knob
test, 4-17
front panel subassemblies
removal and replacement
illustrated, 7-13
procedures, 7-12
FTZ emission requirements, 1-7
functional groups, 5-3
fuses, 6-59

G

general safety considerations, 1-3
German requirements
FTZ emission, 1-7
noise, 1-7
GPIB, A-7
cables
part numbers, 6-57
port
rear panel connector, 5-30
running test software, 4-22
troubleshooting, 4-22
systems check, 4-22
ground, safety earth, 1-3
groups
functional, 5-3

H

handle
kits
part numbers, 6-59
HANDLER I/O
connector pin assignments, 5-14
rear panel, 5-12
handles
with rack mount, 2-6
handling airlines
precautions, 3-24
hard disk drive
copying files from, 7-62
data storage, 5-30
illustrated, 6-56
installing backup files onto, 7-66
location of, 6-51
operation, 5-30
part number, 6-56
removal and replacement
illustrated, 7-64
procedure, 7-62
replaceable parts
illustrated, 6-56
part numbers, 6-56
unique files located on, 7-62
hardware
for bottom assemblies
illustrated, 6-29
part numbers, 6-28
for top assemblies, Option 080
illustrated, 6-17
part numbers, 6-16
for top assemblies, without Option 080
part numbers, 6-12, 6-13
in hard disk drive
part numbers, 6-56
in hard disk drive assembly
illustrated, 6-56
in internal analyzer
illustrated, 6-53
part numbers, 6-52
in rear panel assembly
illustrated, 6-51
part numbers, 6-51
location of part numbers, 6-9
options, B-3
high dynamic range
configuration, 5-19
diagram, 5-20

I

IDE

data storage, 5-30
insertion loss
check
failure of, 3-15
test port cables, 3-15
installing
a serial number, B-5
options, B-3
instruction documentation
symbol, 1-6
instrument markings, 1-6
instrument specifications, 3-6
interconnects
AUX I/O
pin assignments, 5-15
front panel, 5-28
Probe Power, 5-28
USB, 5-28
HANDLER I/O
pin assignments, 5-14
rear panel, 5-10, 5-12, 5-30
1284-C, 5-30
AUX I/O, 5-12
Display, 5-30
EXT 10 MHz REF IN, 5-10
EXT 10 MHz REF OUT, 5-10
GPIB, 5-30
HANDLER I/O, 5-12
LAN, 5-30
PARALLEL, 5-30
RS-232, 5-30
SERIAL, 5-30
TEST SET I/O, 5-12
TRIG IN, 5-12
TRIG OUT, 5-12
USB, 5-30
VGA, 5-30
TEST SET I/O
pin assignments, 5-13
internal analyzer
replaceable hardware
illustrated, 6-53
replaceable parts
illustrated, 6-53
part numbers, 6-52
IP address, LAN, 4-24
ISM1-A mark, 1-6
iso 17025 certificate, Option 1A7
description of, 2-11

isolation

cause of failure, A-15
definition of, A-15
measurements affected by, A-15

K

keypad assembly
illustrated, 6-11
operation, 5-28
part number, 6-10
removal and replacement
illustrated, 7-13
procedure, 7-12
test, 4-17, 4-19
troubleshooting, 4-17

Index

kits

calibration, 2-8, 3-7
handle
part numbers, 6-59
rack mount
part numbers, 6-59
upgrade
part numbers, 6-58
verification, 2-8, 3-7
knob
front panel
part number, 6-10
test, 4-17, 4-19
troubleshooting, 4-17

L

LAN
connector
rear panel, 5-30
cross-over cable, 4-26
IP address, 4-24
ping command, 4-24
ping to and from, 4-24
subnet mask, 4-24
testing between analyzers, 4-26
troubleshooting, 4-24

LCD display

troubleshooting, 4-13
LED board, front panel
illustrated, 6-29
part number, 6-28
linearity
source power
test, 3-31
test port output power test, 3-31
lithium battery disposal, 1-6
LO reject filter board
operation, 5-21
load match
cause of failure, A-12
definition of, A-12
measurements affected by,

$$
\mathrm{A}-12, \mathrm{~A}-14
$$

locating
assembly part numbers, 6-8
hardware part numbers, 6-9
miscellaneous part numbers,
6-8, 6-9
part numbers by type of part, 6-8
replaceable parts
by reference designator, 6-6

LODA

illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement
illustrated, 7-39
procedure, 7-38
troubleshooting, 4-44
LOMA 10
illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement illustrated, 7-33
procedure, 7-32
troubleshooting, 4-42

M

MA 20
illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement illustrated, 7-35 procedure, 7-34
troubleshooting, 4-44
machine screws
for bottom assemblies
illustrated, 6-29
part numbers, 6-28
magnitude check
failure of, 3-17
test port cables, 3-16
maintenance
cleaning, 2-3
preventive effect on error terms, A-3
max output power and frequency range, 5-4
measurement
traceability, 3-22
path, 3-22
uncertainty, 3-21
measurement system
troubleshooting, 4-28
measuring
high-dynamic range devices, 2-3
high-power devices, 2-3
midweb
removal and replacement, 7-72 illustrated, 7-73
midweb fans
troubleshooting, 4-12
miscellaneous parts
location of part numbers, 6-8, 6-9
miscellaneous replaceable parts
part numbers, 6-57, 6-59
mixer bias board
illustrated, 6-29
part number, 6-28

mixer bracket

illustrated, 6-29
part number, 6-28
module
exchange
procedure, 6-5
monitor, external, 4-13
motherboard, receiver
illustrated, 6-21
part number, 6-20
motherboard, system
illustrated, 6-13, 6-17
operation, 5-28
part number, 6-12, 6-16
removal and replacement
illustrated, 7-27
procedure, 7-26
troubleshooting, 4-12
motherboard, test set
illustrated, 6-21
part number, 6-20

\mathbf{N}

network analyzer, See analyzer
noise floor, test, 3-33
noise requirements, 1-7
German, 1-7
noise, trace noise test, 3-32
Non-ANSI/NCSL Z540-1-1994
verification, 3-9
nut
test port coupler
illustrated, 6-29
part number, 6-28

0

OCXO (oven-controlled crystal oscillator)
frequency adjustment, 3-49
theory of operation, 5-9
operating
system recovery, D-1
operating environment
specifications, 3-4
verification, 3-4

operation

A13 frequency offset receiver assembly, 5-24
A9 fractional-N synthesizer
board, 5-24
bias tees, 5-18
configurable test set,
Option 014, 5-18
CPU board, 5-29
data acquisition, 5-29
detectors, 5-17

Index

digital control, 5-26
digital processor, 5-26
display assembly, 5-28
floppy disk drive, 5-30
fractional-N synthesizer, 5-8
frequency offset group, 5-24
frequency reference board, 5-9
front panel, 5-28
front panel interface board, 5-28
hard disk drive, 5-30
keypad assembly, 5-28
LO reject filter board, 5-21
LODA, 5-9
LOMA 10, 5-9
MA $20,5-9$
main RAM, 5-29
phase lock board, 5-10
power supply, 5-31
processing subgroup, 5-29
receiver group, 5-21
receiver modules, 5-21
receiver motherboard, 5-23
reference transfer switches, 5-24
signal separation group, 5-16
SOMA 50, 5-11
source, 5-6
source assembly, 5-10
source group, band modes, 5-6
SPAM board-analog, 5-23
SPAM board-digital, 5-29
splitter assembly, 5-9
step attenuators
receiver, 5-18
source, 5-18
switch splitter 50, 5-16
system motherboard, 5-28
test port couplers, 5-17
test set motherboard, 5-12
USB hub, 5-30
operator's check, 3-10
accessories used in, 3-11
attenuator range, 3-10
dialog box, 3-11
failure of, 3-11
performing, 3-10
Port 1, 3-11
Port 2, 3-11
switch repeatability, 3-10

option

analyzer, 2-3
data
recovering, B-4
repairing, B-4
enable utility
accessing, B-3
dialog box, B-3
hardware, B-3
installing and removing, B-3
service and support, 2-11
software, B-3
Option 010, time domain, 2-3
Option 014, configurable test set, 2-3
block diagram, 5-19
normal configuration, 5-18
operation, 5-18

Option 016

35 dB receiver step attenuators, 5-18
Option 016, receiver attenuators, 2-4
Option 080, frequency offset mode, 2-4, 2-5
Option 081, transfer switch, 2-5
Option 099, firmware upgrade, 2-5
Option 0BW, printed service guide, 2-6
Option 1A7
ISO 17025 certificate, 2-11
Option 1CM, rack mount without handles, 2-6
Option 1CP, rack mount with handles, 2-6
Option UK6, calibration certificate and data, 2-11
Option UNL
60 dB source step attenuators, 5-18
replaceable parts illustrated, 6-31 part numbers, 6-30
source attenuator, 2-6
Option UNL/014
replaceable parts
illustrated, 6-38
part numbers, 6-36
Option UNL/014/016
replaceable parts
illustrated, 6-41
part numbers, 6-39
Option UNL/014/016/080/081
replaceable parts illustrated, 6-50 part numbers, 6-48
Option UNL/014/080/081
replaceable parts
illustrated, 6-47
part numbers, 6-45
Option UNL/016
replaceable parts
illustrated, 6-35
part numbers, 6-34
ordering information
replaceable parts, 6-3
output power, source
accuracy test, 3-30
linearity, 3-31
output power, test port
accuracy test, 3-30
linearity, 3-31

\mathbf{P}

pad
30-dB
illustrated, 6-21
part number, 6-20
pads
required for servicing, 2-8
paint
touch-up
part numbers, 6-59
PARALLEL
port
rear panel connector, 5-30
troubleshooting, 4-22
part numbers
accessories
USB, 6-59
cables
for bottom assembly,
Option 014, 6-32, 6-37
for bottom assembly,
Option 014/081, 6-42, 6-43
for bottom assembly,
Option UNL/014, 6-36
for bottom assembly,
Option UNL/014/016, 6-39, 6-40
for bottom assembly,
Option UNL/014/016/080/
081, 6-48, 6-49
for bottom assembly,
Option UNL/014/080/081, 6-45, 6-46
for bottom assembly,
Option UNL/016, 6-34
for top assembly, Option 080, 6-18
for top assembly, without
Option 080, 6-14
GPIB, 6-57
cables, flexible
for bottom assembly, 6-24
cables, ribbon
for bottom assembly, 6-26
cables, semi-rigid
for bottom assembly, standard, 6-22
cables, wrapped
for bottom assembly, 6-26
documentation, 6-57
hardware in hard disk drive, 6-56

Index

in internal analyzer, 6-52
in rear panel assembly, 6-51 kits
handle, 6-59
rack mount, 6-59
locating
by reference designator, 6-6
for assemblies, 6-8
for hardware, 6-9
for miscellaneous parts, 6-8, 6-9
locating by type of part, 6-8 paint
touch-up, 6-59
protective end caps
for connectors, 6-57
replaceable parts
analyzer covers, 6-54
analyzer feet, 6-54
analyzer strap handle, 6-54
external analyzer, 6-54
for bottom assembly,
Option UNL, 6-30
for bottom assembly,
Option UNL/014, 6-36
for bottom assembly,
Option UNL/014/016, 6-39
for bottom assembly,
Option UNL/014/016/080/
081, 6-48
for bottom assembly, Option UNL/014/080/081, 6-45
for bottom assembly,
Option UNL/016, 6-34
for front panel assembly, 6-10
for top assembly, Option 080, 6-16
for top assembly, without
Option 080, 6-12
in bottom assembly, 6-20
in bottom assembly,
Option 014/081, 6-42
in hard disk drive, 6-56
in internal analyzer, 6-52
in rear panel assembly, 6-51
miscellaneous analyzer, 6-57, 6-59
replaceable parts, hardware
for bottom assembly, 6-28
supplies
ESD, 6-58
tools
service, 6-57
upgrade kits, 6-58

parts

external analyzer
illustrated, 6-55
part numbers, 6-54
in bottom assembly, no
hardware options
illustrated, 6-21
part numbers, 6-20
in bottom assembly,
Option 014/081
illustrated, 6-44
part numbers, 6-42
in bottom assembly,
Option UNL
illustrated, 6-31
part numbers, 6-30
in bottom assembly,
Option UNL/014
illustrated, 6-38
part numbers, 6-36
in bottom assembly,
Option UNL/014/016
illustrated, 6-41
part numbers, 6-39
in bottom assembly,
Option UNL/014/016/080/
081
illustrated, 6-50
part numbers, 6-48
in bottom assembly,
Option UNL/014/080/081
illustrated, 6-47
part numbers, 6-45
in bottom assembly,
Option UNL/016
illustrated, 6-35
part numbers, 6-34
in front panel assembly
illustrated, 6-11
part numbers, 6-10
in hard disk drive assembly
illustrated, 6-56
part numbers, 6-56
in internal analyzer
illustrated, 6-53
part numbers, 6-52
in rear panel assembly
illustrated, 6-51
part numbers, 6-51
in top assembly, Option 080
illustrated, 6-17
part numbers, 6-16
in top assembly, without
Option 080
illustrated, 6-13
part numbers, 6-12
locating
by reference designator, 6-6
by type of part, 6-8
miscellaneous
part numbers, 6-57, 6-59
replaceable
listing of, 6-6
ordering information, 6-3
parts, hardware
in bottom assembly
illustrated, 6-29
part numbers, 6-28
password
Agilent administrator, 7-67
performance
tests, 3-30
calibration coefficients, 3-34
description of, 3-7
dynamic accuracy, 3-35
frequency accuracy, 3-31
noise floor, 3-33
power meter accuracy, 3-37
receiver compression, 3-32
source power accuracy, 3-30
source power linearity, 3-31
system crosstalk, 3-35
test port crosstalk, 3-35
test port output power accuracy, 3-30
test port output power linearity, 3-31
trace noise, 3-32
verification
ANSI/NCSL Z540-1-1994, 3-8
non-ANSI/NCSL Z540-1-1994, 3-9
phase lock board
illustrated, 6-13, 6-17
operation, 5-10
part number, 6-12, 6-16
removal and replacement
illustrated, 7-21
procedure, 7-20
test nodes, 4-35
phase lock receiver board
removal and replacement
illustrated, 7-25
procedure, 7-24
phase stability check
failure of, 3-17
test port cables, 3-16
pin assignments
connectors
AUX I/O, 5-15
HANDLER I/O, 5-14
TEST SET I/O, 5-13
ping
command, LAN, 4-24

Index

from network, 4-25
to analyzer, 4-24
pixel
damaged, 4-19
definition, 4-19
PMYO (permanent-magnet YIG oscillator)
frequency adjustment, 3-50
theory of operation, 5-10
Port 1
attenuator
removal and replacement, 7-56
check, 3-11
typical power output, 4-45
Port 2
attenuator
removal and replacement, 7-56
check, 3-11
typical power output, 4-46
post-repair procedures, 7-75
power meter accuracy test, 3-37
power supply
check, 4-7
functional description of, 5-5
functional group, 5-3
if all voltages are missing, 4-10
operation, 5-31
voltage checks, 4-8
power supply assembly
illustrated, 6-13, 6-17
part number, 6-12, 6-16
removal and replacement
illustrated, 7-17
procedure, 7-16
troubleshooting, 4-7
power, source
accuracy test, 3-30
linearity test, 3-31
power, test port output
accuracy test, 3-30
linearity test, 3-31
precautions
handling airlines, 3-24
pre-repair
procedures, 7-3
caution about, 7-3
warnings about, 7-3
preventive maintenance
effect on error terms, A-3
printed service guide, Option 0BW, 2-6
probe power
connector, 5-28
measurement points, 4-7
troubleshooting, 4-17
processing subgroup
operation, 5-29

protection

against ESD, 1-5, 3-4, 4-3, 7-3, A-4
protective end caps
for connectors part numbers, 6-57

R

R1 channel
troubleshooting, 4-29
$\mathbf{R 1}$ receiver module
troubleshooting, 4-50

R1 trace

troubleshooting, 4-29, 4-32
$\mathbf{R} 2$ channel
troubleshooting, 4-29
$\mathbf{R} 2$ receiver module
troubleshooting, 4-50
R2 trace
troubleshooting, 4-29, 4-32
rack mount kits
part numbers, 6-59
with handles, Option 1CP, 2-6
without handles, Option 1CM, 2-6
raising the receiver deck
illustrated, 7-9
procedure, 7-8
RAM, main
operation, 5-29
rear panel
connectors
1284-C, 5-30
AUX I/O, 5-12
Display, 5-30
EXT 10 MHz REF IN, 5-10
GPIB, 5-30
HANDLER I/O, 5-12
LAN, 5-30
PARALLEL, 5-30
RS-232, 5-30
SERIAL, 5-30
TEST SET I/O, 5-12
TRIG IN, 5-12
TRIG OUT, 5-12
USB, 5-30
VGA, 5-30
interconnects, 5-10, 5-12, 5-30
replaceable parts illustrated, 6-51
part numbers, 6-51
troubleshooting, 4-21
rebuilt-exchange assemblies
program, 6-5
receiver
accuracy
dynamic accuracy test, 3-35
calibration, 3-44
compression test, 3-32
dynamic accuracy test, 3-35
functional description of, 5-4
functional group, 5-3
linearity
dynamic accuracy test, 3-35
output
troubleshooting, 4-50
receiver (A13)
output
troubleshooting, 4-53
receiver attenuators
operation, 5-18
receiver attenuators, Option 016
description of, 2-4
removal and replacement illustrated, 7-69 procedure, 7-68
receiver deck
raising and removing
illustrated, 7-9
procedure, 7-8
receiver display
running the test, 4-29
receiver group
block diagram, 5-22, 5-25
defined, 4-30, 4-31
operation, 5-21
troubleshooting, 4-49
receiver module
channel A
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement
illustrated, 7-53
removal and replacement
procedure, 7-52
channel B
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement illustrated, 7-53
removal and replacement procedure, 7-52
channel R1
illustrated, 6-21
operation, 5-21
part number, 6-20
removal and replacement
illustrated, 7-53
removal and replacement procedure, 7-52
channel R2
illustrated, 6-21
operation, 5-21
part number, 6-20

Index

removal and replacement illustrated, 7-53
removal and replacement procedure, 7-52
receiver motherboard
illustrated, 6-21
operation, 5-23
part number, 6-20
removal and replacement illustrated, 7-55
procedure, 7-54
troubleshooting, 4-50

recovery

option data, B-4
recovery, operating system, D-1
reference channel R1, See R1 channel
reference channel R2, See R2 channel
reference channel switch
removal and replacement
illustrated, 7-71
procedure, 7-70
reference transfer switch, Option 081
illustrated, 6-44, 6-47, 6-50
part number, 6-42, 6-45, 6-48
reference transfer switches
operation, 5-24
reflection tracking
cause of failure, A-13
definition of, A-13
measurements affected by, A-13
removing
assemblies, See specific assembly.
options, B-3
parts, See specific part.
repair
post-repair procedures, 7-75
pre-repair procedures, 7-3
procedures
caution about, 7-3
warnings about, 7-3
repairing
option data, B-4
replaceable cables
in bottom assembly, Option 014
illustrated, 6-33
part numbers, 6-32, 6-37
in bottom assembly,
Option 014/081
part numbers, 6-42, 6-43
in bottom assembly,
Option UNL/014
illustrated, 6-38
part numbers, 6-36
in bottom assembly, Option UNL/014/016
illustrated, 6-41
part numbers, 6-39, 6-40
in bottom assembly, Option UNL/014/016/080/ 081
illustrated, 6-50
part numbers, 6-48, 6-49
in bottom assembly, Option UNL/014/080/081
illustrated, 6-47
part numbers, 6-45, 6-46
in bottom assembly, Option UNL/014/081
illustrated, 6-44
in bottom assembly, Option UNL/016
illustrated, 6-35
part numbers, 6-34
in top assembly, Option 080
illustrated, 6-19
part numbers, 6-18
in top assembly, without Option 080
illustrated, 6-15
part numbers, 6-14
replaceable cables, flexible
in bottom assembly
illustrated, 6-25
part numbers, 6-24
replaceable cables, ribbon
in bottom assembly
illustrated, 6-27
part numbers, 6-26
replaceable cables, semi-rigid
in bottom assembly, standard
illustrated, 6-23
part numbers, 6-22
replaceable cables, wrapped
in bottom assembly
illustrated, 6-27
part numbers, 6-26
replaceable hardware
in hard disk drive part numbers, 6-56
in hard disk drive assembly
illustrated, 6-56
in internal analyzer
illustrated, 6-53
part numbers, 6-52
replaceable parts
external analyzer
illustrated, 6-55
part numbers, 6-54
hardware, in bottom assembly part numbers, 6-28
in bottom assembly, no hardware options
illustrated, 6-21
part numbers, 6-20
in bottom assembly,
Option 014/081
illustrated, 6-44
part numbers, 6-42
in bottom assembly,
Option UNL, 6-30
illustrated, 6-31
in bottom assembly, Option UNL/014, 6-36
illustrated, 6-38
in bottom assembly,
Option UNL/014/016
illustrated, 6-41
part numbers, 6-39
in bottom assembly,
Option UNL/014/016/080/08
1, 6-48
illustrated, 6-50
in bottom assembly, Option UNL/014/080/081, 6-45
illustrated, 6-47
in bottom assembly,
Option UNL/016
illustrated, 6-35
part numbers, 6-34
in front panel assembly, 6-10
illustrated, 6-11
in hard disk drive
part numbers, 6-56
in hard disk drive assembly
illustrated, 6-56
in internal analyzer
illustrated, 6-53
part numbers, 6-52
in rear panel assembly
illustrated, 6-51
part numbers, 6-51
in top assembly, Option 080, 6-16
illustrated, 6-17
in top assembly, without Option 080, 6-12
illustrated, 6-13
listing of, 6-6
locating
by reference designator, 6-6
by type of part, 6-8
miscellaneous analyzer
part numbers, 6-57, 6-59
ordering information, 6-3

Index

replaceable parts, hardware
in bottom assembly illustrated, 6-29
replacement
A1 keypad assembly illustrated, 7-13 procedure, 7-12
A2 display assembly illustrated, 7-13 procedure, 7-12
A3 front panel interface board illustrated, 7-13 procedure, 7-12
A4 power supply assembly illustrated, 7-17 procedure, 7-16
A6 SPAM board illustrated, 7-19 procedure, 7-18
A8 fractional-N synthesizer board
illustrated, 7-19
procedure, 7-18
A9 fractional-N synthesizer board
illustrated, 7-19
procedure, 7-18
A10 frequency reference board
illustrated, 7-19
procedure, 7-18
A11 phase lock board
illustrated, 7-21
procedure, 7-20
A12 source 20
illustrated, 7-23
procedure, 7-22
A13 phase lock receiver board
illustrated, 7-25
procedure, 7-24
A14 motherboard
illustrated, 7-27
procedure, 7-26
A15 CPU board
illustrated, 7-29
procedure, 7-28
A16 test set motherboard
illustrated, 7-31
procedure, 7-30
A17 LOMA 10
illustrated, 7-33
procedure, 7-32
A18 MA 20
illustrated, 7-35
procedure, 7-34
A19 splitter
illustrated, 7-37
procedure, 7-36

A20 LODA
illustrated, 7-39
procedure, 7-38
A21 SOMA 50
illustrated, 7-41
procedure, 7-40
A22 switch splitter
illustrated, 7-43
procedure, 7-42
A23 channel R1 detector
illustrated, 7-45, 7-47
procedure, 7-44, 7-46
A24 channel R2 detector
illustrated, 7-45, 7-47
procedure, 7-44, 7-46
A25 test port 1 coupler illustrated, 7-49
procedure, 7-48
A26 test port 2 coupler illustrated, 7-49 procedure, 7-48
A27 channel A first converter illustrated, 7-51 procedure, 7-50
A28 channel R1 first converter illustrated, 7-51
procedure, 7-50
A29 channel R2 first converter illustrated, 7-51
procedure, 7-50
A30 channel B first converter illustrated, 7-51
procedure, 7-50
A31 channel A receiver module illustrated, 7-53
procedure, 7-52
A32 channel R1 receiver module illustrated, 7-53 procedure, 7-52
A33 channel R2 receiver module illustrated, 7-53
procedure, 7-52
A34 channel B receiver module illustrated, 7-53
procedure, 7-52
A35 receiver motherboard
illustrated, 7-55
procedure, 7-54
A36 port 1 60-dB step
attenuator
illustrated, 7-57
procedure, 7-56
A37 port $260-\mathrm{dB}$ step
attenuator
illustrated, 7-57
procedure, 7-56

A38 port 1 bias tee
illustrated, 7-59
procedure, 7-58
A39 port 2 bias tee
illustrated, 7-59
procedure, 7-58
A40 floppy disk drive illustrated, 7-61
procedure, 7-60
A41 hard disk drive
illustrated, 7-64
procedure, 7-62
A43 channel A 35-dB step
attenuator
illustrated, 7-69
procedure, 7-68
A44 channel B 35-dB step attenuator
illustrated, 7-69
procedure, 7-68
A45 channel R1 transfer switch
illustrated, 7-71
procedure, 7-70
A46 channel R1 transfer switch
illustrated, 7-71
procedure, 7-70
analyzer covers
illustrated, 7-7
procedure, 7-6
assembly
cautions about, 7-3
list of procedures, 7-4
sequence, 6-4, 7-3
warnings about, 7-3
display inverter
illustrated, 7-15
procedure, 7-14
display lamp
illustrated, 7-15
procedure, 7-14
fan, 7-72
front panel assembly
illustrated, 7-11
procedure, 7-10
front panel subassemblies
illustrated, 7-13
procedures, 7-12
midweb
illustrated, 7-73
procedure, 7-72
raising the receiver deck
illustrated, 7-9
procedure, 7-8
replacement sequence, 4-3
return loss check
failure of, 3-14
test port cables, 3-14

Index

rotary pulse generator (RPG)

part number, 6-10
test, 4-17, 4-19
troubleshooting, 4-17

RS-232 port

rear panel connector, 5-30
troubleshooting, 4-22

S

safety
considerations, 1-3
earth ground, 1-3
symbols, 1-3
SCPI, A-7
screws
for bottom assemblies
illustrated, 6-29
part numbers, 6-28
serial bus
test, 4-33
dialog box, 4-34
performing, 4-33
serial number
changing, B-5
installing, B-5
SERIAL port
rear panel connector, 5-30
troubleshooting, 4-22

service

contacting Agilent, 2-10
options, 2-11
procedures
caution about, 7-3
post-repair, 7-75
pre-repair, 7-3
warnings about, 7-3
static safety parts
part numbers, 6-58
required, 2-9
test equipment
required, 2-7
tools
part numbers, 6-57
required, 2-9
warnings, 1-4
warranty
standard, 2-11
three-year return to Agilent, 2-11
service guide, printed, Option 0BW, 2-6
shipment for service or repair, 2-11
signal separation
functional description of, 5-4
functional group, 5-3
signal separation group
block diagram, 5-17
defined, 4-30
operation, 5-16
troubleshooting, 4-45
single band failure, 4-31, 4-39
software
options, B-3
SOMA 50
illustrated, 6-21
operation, 5-11
part number, 6-20
removal and replacement
illustrated, 7-41
procedure, 7-40
source
calibration, 3-43
functional group, 5-3
operation, 5-6
power accuracy test, 3-30
power linearity test, 3-31
source 20
illustrated, 6-13, 6-17
operation, 5-10
part numbers, 6-12, 6-16
removal and replacement
illustrated, 7-23
procedure, 7-22
test nodes, 4-34
source attenuators
operation, 5-18
source attenuators, Option UNL
description of, 2-6
removal and replacement
illustrated, 7-57
procedure, 7-56
source group
block diagram, 5-7
defined, 4-30
troubleshooting, 4-33
source match
cause of failure, A-11
definition of, A-11
measurements affected by, A-11
SPAM board
illustrated, 6-13, 6-17
operation
analog, 5-23
digital, 5-29
part number, 6-12, 6-16
removal and replacement illustrated, 7-19 procedure, 7-18
troubleshooting, 4-50
speaker
front panel, 5-28
troubleshooting, 4-17
specification
stabilization, warm up time, 3-4
specifications
instrument, 3-6
system, 3-6

splitter

illustrated, 6-21
operation, 5-9
part number, 6-20
removal and replacement
illustrated, 7-37
procedure, 7-36
stabilization
warm up time, 3-4
static safety parts
required for servicing, 2-9
step attenuator
receiver
operation, 5-18
source
operation, 5-18
step attenuator, receiver
removal and replacement illustrated, 7-69
procedure, 7-68
step attenuator, source
operator's check, 3-10
port 1
troubleshooting, 4-47
port 2
troubleshooting, 4-47
port 1
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
port 2
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-34, 6-36, 6-39, 6-45, 6-48
range check, 3-10
removal and replacement
illustrated, 7-57
procedure, 7-56
step attenuators
$35-\mathrm{dB}$ receiver
illustrated, 6-35, 6-41
part number, 6-34, 6-39, 6-48
60-dB source
illustrated, 6-31, 6-35, 6-38, 6-41, 6-47, 6-50
part number, 6-30, 6-36, 6-45
$60-\mathrm{dB}$ source
part number, 6-34, 6-39, 6-48
storage data
IDE, 5-30
strap handle
analyzer
illustrated, 6-55
part number, 6-54

Index

subgroup

data acquisition and processing, 5-26
front panel, 5-26
subnet mask, LAN, 4-24
substitution
cable, 3-23
calibration kits, 3-23
verification kits, 3-23
supplies
ESD part numbers, 6-58
support
contacting Agilent, 2-10
options, 2-11
organization, 2-11
switch repeatability
check, 3-10
operator's check, 3-10
switch splitter
illustrated, 6-21
operation, 5-16
part number, 6-20
removal and replacement illustrated, 7-43
procedure, 7-42
troubleshooting, 4-47
switch, reference channel
removal and replacement
illustrated, 7-71
procedure, 7-70
switch, transfer
removal and replacement
illustrated, 7-71 procedure, 7-70
switch/LO reject filter board
operation, 5-21
synthesized source
functional description of, 5-4

system

adjustments, 3-1, 3-42, B-1, C-1
frequency at $10 \mathrm{MHz}, 3-49$
frequency at $3.8 \mathrm{MHz}, 3-50$
getting ready, 3-4
LO power, 3-47
receiver calibration, 3-44
source calibration, 3-43
checks, 3-1, B-1, C-1
getting ready, 3-4
cross talk test, 3-35
specifications, 3-6
verification, 3-1, 3-7, 3-20, B-1, C-1
device connections, 3-26
dialog box, 3-25
example of results, 3-28, 3-29
failure flowchart, 3-27
failure of, 3-27
getting ready, 3-4
interpreting results, 3-28
performing, 3-23
procedure, 3-25
test setup, 3-25
what it verifies, 3-20
system motherboard
illustrated, 6-13, 6-17
operation, 5-28
part number, 6-12, 6-16
removal and replacement
illustrated, 7-27
procedure, 7-26
troubleshooting, 4-12
system, operating
recovery, D-1

T

test
calibration coefficients, 3-34
dynamic accuracy, 3-35
frequency accuracy, 3-31
noise floor, 3-33
performance
frequency accuracy, 3-31
source power accuracy, 3-30
test port output power accuracy, 3-30
power meter accuracy, 3-37
receiver compression, 3-32
source power linearity, 3-31
system crosstalk, 3-35
test port crosstalk, 3-35
test port output power linearity, 3-31
trace noise, 3-32

test equipment

required for service, 2-7
required for servicing, 2-7
test nodes
on A12 source 20, 4-34
test port
cable checks
connector repeatability
failure, 3-19
coupler nut
illustrated, 6-29
part number, 6-28
cross talk test, 3-35
dynamic accuracy test, 3-35
noise floor test, 3-33
output power accuracy test, 3-30
output power linearity test, 3-31
test port 1 coupler
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement
illustrated, 7-49
procedure, 7-48
troubleshooting, 4-47
test port 2 coupler
illustrated, 6-21
operation, 5-17
part number, 6-20
removal and replacement illustrated, 7-49
procedure, 7-48
troubleshooting, 4-47
test port cable
checks, 3-10
accessories used in, 3-13
connector repeatability, 3-18
insertion loss, 3-15
insertion loss failure, 3-15
magnitude and phase stability, 3-16
magnitude and phase stability
failure, 3-17
performing, 3-13
return loss, 3-14
return loss failure, 3-14
TEST SET I/O
connector pin assignments, 5-13
rear panel, 5-12
test set motherboard
illustrated, 6-21
operation, 5-12
part number, 6-20
removal and replacement
illustrated, 7-31
procedure, 7-30
test nodes, 4-36, 4-37, 4-38
troubleshooting, 4-36, 4-37, 4-38
test setup
system verification, 3-25
tests
adjustments, 3-42
frequency offset group (option 080), 4-51
performance, 3-7, 3-30
serial bus, 4-33
dialog box, 4-34
performing, 4-33
source group, 4-39
tests nodes
on A10 frequency reference, 4-35
on A11 phase lock board, 4-35
on A16 test set motherboard, 4-36, 4-37, 4-38
on A8 fractional-N synthesizer board, 4-36

Index

on A9 fractional-N synthesizer board, 4-38
time domain, Option 010, 2-3
tools
required for servicing, 2-9
service, part numbers, 6-57
top assembly, Option 080
replaceable cables
illustrated, 6-19
part numbers, 6-18
replaceable parts illustrated, 6-17 part numbers, 6-16
top assembly, without Option 080
replaceable parts
part numbers, 6-12
top assembly, without Option 080
replaceable cables
illustrated, 6-15
part numbers, 6-14
replaceable parts
illustrated, 6-13
touch-up
paint
part numbers, 6-59
trace
troubleshooting all, 4-29, 4-31
trace A
troubleshooting, 4-29, 4-32
trace B
troubleshooting, 4-29, 4-32
trace noise
test, 3-32
trace R1
troubleshooting, 4-29, 4-32
trace R2
troubleshooting, 4-29, 4-32
traceability
measurement, 3-22
path, 3-22
transfer switch
Option 081, 2-5
removal and replacement illustrated, 7-71 procedure, 7-70
transfer switch, Option 081
illustrated, 6-44, 6-47, 6-50
part number, 6-42, 6-45, 6-48
transfer switches
operation, 5-24
transmission tracking
cause of failure, A-14
definition of, A-14
TRIG IN connector
rear panel, 5-12
TRIG OUT connector
rear panel, 5-12
troubleshooting
1284-C port, 4-22

A1 front panel keypad, 4-17
A3 front panel interface board, 4-13, 4-17
A4 power supply assembly, 4-7
A6 SPAM board, 4-50
A8 fractional-N synthesizer board
band 1, 4-41
band 2, 4-41
bands 3-25, 4-42
A9 fractional-N synthesizer board
band 2, 4-52
bands $3-25,4-53$
A10 frequency reference board, 4-40, 4-41, 4-51
A12 source 20, 4-39
A14 motherboard, 4-12
A15 CPU board, 4-13, 4-21
A16 test set motherboard board, 4-36, 4-37, 4-38
A17 LOMA 10, 4-42
A18 MA 20, 4-44
A2 display assembly, 4-13, 4-17
A20 LODA, 4-44
A22 switch splitter, 4-47
A25 test port 1 coupler, 4-47
A26 test port 2 coupler, 4-47
A27 channel A first converter, 4-49
A28 channel R1 first converter, 4-49
A29 channel R2 first converter, 4-49
A30 channel B first converter, 4-49
A31 channel A receiver module, 4-50
A32 channel R1 receiver module, 4-50
A33 channel R2 receiver module, 4-50
A34 channel B receiver module, 4-50
A35 receiver motherboard, 4-50
A36 port 1 step attenuator, 4-47
A37 port 2 step attenuator, 4-47
A38 port 1 bias tee, 4-48
A39 port 2 bias tee, $4-48$
A45 and A46 switches (option 081), 4-54
output troubleshooting, 4-54
A45 switch (option 081)
output troubleshooting, 4-54
A46 switch (option 081)
output troubleshooting, 4-54
band 1, 4-41
band 1 for A9, 4-52
band 2, 4-41, 4-52
bands 3-25, 4-42, 4-53
channel A, 4-29, 4-45
channel B, 4-29, 4-45
channel R1, 4-29
channel R2, 4-29
check the basics, 4-4
error term failure
suspect devices, A-3
fans, 4-12
fractional-N synthesizer board (A9)
band 1, 4-52
front panel, 4-17
front panel knob, 4-17
front-panel USB, 4-17
GPIB port, 4-22
LAN, 4-24
LCD display, 4-13
measurement system, 4-28
frequency offset (080) group, 4-51
frequency offset group (option 080), 4-51
receiver group, 4-49
running the receiver display, 4-29
signal separation group, 4-45
source group, 4-33, 4-39
traces A, B, R1, R2, 4-29
where to begin, 4-30
order of removal of boards, 4-10
PARALLEL port, 4-22
ping command, 4-24
power output of channel A, 4-45
power output of channel B, 4-45
power up, 4-6
power supply check, 4-7
probe power, 4-17
rear panel, 4-21
rear-panel USB, 4-21
receiver output, 4-50
receiver output (A13), 4-53
RPG, 4-17
RS-232 port, 4-22
SERIAL port, 4-22
source 20, 4-39
source group
single vs. broadband, 4-39
speaker, 4-17
trace A, 4-29
trace B, 4-29
trace R1, 4-29
trace R2, 4-29
typical power output
Port 1, 4-45

Index

Port 2, 4-46
using controllers to system
troubleshoot, 4-23
using error terms, A-3
using the extender board, 4-8
VGA port, 4-22
where to begin, 4-4

U

uncertainty

measurement, 3-21
uninstalling options, B-3

upgrade

configurable test set, Option 014, 2-3
source attenuator, Option UNL, 2-6
time domain, Option 010, 2-3

upgrade kits

part numbers, 6-58
upgrade, firmware
downloading from the internet, C-2
installing using Option 099, C-3
Option 099, 2-5
upgrade, frequency offset mode
Option 016, 2-4, 2-5
upgrade, receiver attenuator
Option 016, 2-4
upgrade, transfer switch
Option 081, 2-5
USB
accessories
CD-RW drive, 2-6
hub, 2-6
part numbers, 6-59
front panel
troubleshooting, 4-17
port
front panel connector, 5-28
rear panel connector, 5-30
rear panel
troubleshooting, 4-21
USB hub
operation, 5-30
utility
option enable
accessing, B-3
dialog box, B-3

V

VCO (voltage-controlled oscillator)
defined, 5-6
verification
ANSI/NCSL Z540-1-1994, 3-8
kits, 2-8, 3-7
substitution, 3-23
non-ANSI/NCSL Z540-1-1994, 3-9
of operating environment, 3-4
of operating specifications, 3-4
system, 3-1, 3-7, 3-20, B-1, C-1
device connections, 3-26
dialog box, 3-25
example of results, 3-28, 3-29
failure flowchart, 3-27
failure of, 3-27
getting ready, 3-4
interpreting results, 3-28
performing, 3-23
procedure, 3-25
test setup, 3-25
what it verifies, 3-20
VGA monitor, 4-13
VGA port
rear panel connector, 5-30
troubleshooting, 4-22

W

warm up

analyzer, 3-4
warning, 1-3
warnings for servicing, 1-4
warranty

service

standard, 2-11
three-year return to Agilent, 2-11
Windows, 2-7

Y

YIG (yttrium-iron-garnet)

defined, 5-6
YIG oscillator
PMYO frequency adjustment, 3-50
YTO (YIG-tuned oscillator)
defined, 5-10
theory of operation, 5-10

[^0]: esd_setup

[^1]: 1. This option only functions when option 080 is enabled.
[^2]: Microsoft® ${ }^{\circledR}$ and Windows® 2000 are U.S. registered trademarks of Microsoft Corporation.

[^3]: 1. This test requires a higher accuracy power meter than standard. Refer to "Required Service Test Equipment" on page 2-7 for specifications. If an Option G12 or H12 power meter is not available, refer to the "Power Meter Accuracy Test" on page 3-37 to verify the accuracy of a standard power meter.
[^4]: 1. The letters x represent the IP address of the analyzer.
[^5]: 1. This instrument section will be tested as part of the "Frequency Offset Group Tests" on page 4-51 troubleshooting. This option only functions when option 080 has been enabled on the PNA.
[^6]: a. Part numbers in italic typeface are for rebuilt exchange assemblies. Refer to "Rebuilt-Exchange Assemblies" on page 6-5.

[^7]: IMPORTANT Data are listed here as a convenience. Detailed instrument specifications are listed in the embedded help in the network analyzer.

[^8]: Windows ${ }^{\circledR}$, Windows ${ }^{\circledR} 95$, Windows ${ }^{\circledR} 98$, Windows ${ }^{\circledR}$ ME, Windows ${ }^{\circledR}$. XP, Windows ${ }^{\circledR}$, NT, and Windows ${ }^{\circledR} 2000$ are U.S. registered trademarks of Microsoft Corporation.

